
The following are full-credit answers copied from some of your
responses (without attribution or permission). Some of the answers are
extremely complete; others just sufficient. For the programming
problems, there are many ways to solve each problem. I just picked
one. For those of you who hand-wrote answers; I did not use your
answers here. They were no less correct, just harder to use and
anonymize.

Problem 1:
**

 * @param replaced — a sting a characters to be replaced

 * @param replacers — a string of characters to be used in place of

 * the replacements. replacers must be the same length as replaced

 * @param target — the string in which the replacement is to be done

 * @return the number of characters in target that were changed

 **/

 int replaceChars(char *replaced, char *replacers, char *target){

 int count,i;

 // char current = *target;

 char *replacedStartHolder = replaced;

 char *replacersStartHolder = replacers;

 //assume the input of replaced and replacers are the same length

 while (*target!= '\0'){

 while (*replaced != '\0'){

 if(*target == *replaced){

 *target = *replacers;

 count++;

 } else {

 replaced ++;

 replacers ++;

 }

 }

 target ++;

 replaced = replacedStartHolder;

 replacers = replacersStartHolder;

 }

 return count;

 }

Problem 2:

Visualization of the 2D array: {

{1, 2} {3, 4} {5, 6} {7, 8} {9, 10}

}

LINE 1:

• - For line 1, the first value is 1 because the position on the 0 index
for row and 0 index for column in the 2d array is being accessed,
which, as is seen in the instantiation of arr[][], is 1.

• - Similarly, for the second output, 4, the value at row index 1 and
column index 1 is 4.

• - For the third output, something a bit different is happening.
Though the print statement calls the index value 2 for the column,
this does not exist in the 1st row, and so the program moves on to
read the next value, 5, which is technically in position [2][0]. Since
C does not use official 2D arrays, and rather a 1D array with
pointers designating the new rows, this kind of overflow can
happen and it will just read the next value.
LINE 2:

• - For the first printed number, the memory address 245041312 is
being output, because %d is returning a reference to the pointer
rather than the value (because the array is made up of doubles,
so a call to print an integer would not return the value at that spot
but rather the memory address). 245041312 is the memory
location of the beginning of the array.

• - For the second printed number, a slightly different memory
address, 245041344, is being output, again because of the printf
statement calling for an integer rather than a double. This address
is different from the memory address of arr, even though arr[2] is a
position on arr[][], because there are values between arr[0][0] and
arr[2][0], specifically 4 values in this case. Each of these 4 values
takes up 8 bits in memory, making a difference of 32 bits between
the first memory address and the second.

• - The third printed number is a similar memory address to the first
two, in this case 56 bits or 7 values down from the beginning of
the array. It is additionally printed as a memory address because
of use of &, which references a variable's memory address rather
than value (although since the printf is still asking for an integer
rather than a double, this would return a memory address
regardless).

LINE 3:

• - The first value of line 3, 245041352, is again a memory address,
this time from the
double pointer variable dp. The reason why this memory address
is the same as the one at arr[0][1], is because when dp was
instantiated, it was declared as a pointer to the memory address
of arr[0][1], given by the use of &.

• - The second value of line 3 prints as 0 because the printf
statement is calling for an integer value from a pointer in an array
of doubles, and since this is not possible, it returns no value, or 0,
instead.

• - The third value of line 3 prints as 6 because the printf statement
is calling for a double value, and the dp* now points to the same
memory address as arr[0][1], which was changed from 2 to 6 with
the addition of +4 in the line above.

•

Problem 3:

define LINE_LEN 256
int main(void){
 char line[LINE_LEN];
 int lines = 0;
 int characters;
 while(1){
 if(NULL == fgets(line, LINE_LEN, stdin)){
 break;
} lines++;
 while(line[characters] != '\0'){
 characters++;
}
}
 printf("%d%3d", lines, characters);
}

gcc -o counter counter.c
gcc -o echocl echoCL.c
./echocl this is a test | ./counter

PROBLEM 4: I'm only explaining why the numbers are what they are "after the colon".

LINE 0: i is 5, because 5 is the value stored in i when it is initiated. The same goes for j = 7, and
k = 9.

They are all of type long. They each print out the values that are stored: 5 7 9.

LINE 1: each of the commands evaluate to 1 being true, or 0 being false. i = 5 is less than j = 7;

it evaluates to 1, true. j = 7 is not greater than k = 9; it evaluates to 0, false. k = 9 is not

less than i = 5; it evaluates to 0, but 0 is less than j = 7; it evaluates to true, 1. So the output is 1 0
1.

LINE 2: First, we know the address of i gets saved as the value of k. Then the pointer/address of
k gets

saved as the variable, kk. That means *kk holds the same value as k and i, which is 5. But then,
*kk is

set equal to k, and *kk points to i, so changing *kk to k means that i is now also k, so they now
have all

the same address which is why they each print out the same address.

P5:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

int sev2dec(char *seviString)
{
 int dec = 0;
 int f = 0; //bool for "first"
 for (int i = 0; i < strlen(seviString); i++)
 {
 int c = tolower(seviString[i]);
 if (c >= 97 && c <= 122)
 {
 c -= 87;
 if (f == 0)
 {
 dec = 17 * c;
 f++;
 }
 else
 {
 dec += c;
 }
 }
 else
 {
 c -= 48;
 if (f == 0)

 {
 dec = 17 * c;
 f++;
 }
 else
 {
 dec += c;
 }
 }
 }
 return dec;
}

int main(void)
{
 printf("%d\n", sev2dec("c5")); //ask are preconditions that its
only digits or alphabet?
}

EC:
1. head -90 file | tail -10 > bbb
2. ls -l | grep \.[hc]$
3. grep [1-9][0-9][0-9][0-9][0-9][0-9]* file

