
CS246
Unix:ls -l

C:recursion
March 11

Midterm
• Average: 86, std dev 11
• Q1: a=15.8 sd=3.0
• Q2: a=17.5 sd=3.8
• Q3: a=18.25 sd=2.4
• Q4: a=18.66 sd=3.7
• Q5: a=15.33 sd=4.0
• EC: 9 points total awarded

• full credit answers are posted on the web site.

2

ls -l
• Reading across

• char 0: file type: d==directory, l=soft link, -=regular file
• chars 1-10: permissions

• Column 1 ???
• Column 2: file owner
• Column 3: file group
• Column 4: file size
• Columns 5,6,7: modification date and time
• Column 8: file name

3

[gtowell@powerpuff ~]$ ls -l
total 391500
drwxr-x--- 5 gtowell faculty 5 Feb 3 17:17 206
-rw-r--r-- 1 gtowell faculty 11633094 Feb 4 21:19 206Public.tgz
drwxr-xr-x 4 gtowell faculty 4 Mar 11 09:24 246
-rw-r--r-- 1 gtowell faculty 35 Feb 16 14:46 aaa
drwxrwxrwx 3 gtowell faculty 3 Nov 9 10:30 Android
drwxr-xr-x 3 gtowell faculty 3 Nov 9 10:38 AndroidStudioProjects
drwxr-xr-x 3 gtowell faculty 3 Nov 9 10:28 AStudio
drwxr-xr-x 2 gtowell faculty 21 Feb 23 10:00 bin

Owners and groups
• UNIX> whoami
• shows who you are logged in as

• UNIX> groups
• shows the groups you are a member of
• in big installations you might be members of several groups

• When create a file is is created with the current login as owner
and the default group as group
• chown
• chgrp
• Not permitted on our systems

4

Permissions
• permissions are given by 3 triples

• each triple:
• READ: r or - reading the file is permitted (or not)
• WRITE: w or - writing to the file is permitted (or not)
• EXECUTE: x or - executing the file is permitted (or not)

• for directories, x means can get a listing
• letter means permitted, - means not
• ex: r - -, r-x, or rwx

• First triple == what the file owner is allowed to do
• Second triple = what people in the group are allowed to do
• Third triple = what everyone is allowed to do
• so rwxrw-r- - means that the owner can read the file, write the file and execute, the

groups members can read and write and anyone can read

5

Changing Permissions
• So, for example, to execute a file , you must have the right permission
• As file owner you can change permissions

• chmod XXX filename
• X is a number in 0-7

• read = 4 (r=4, -=0)
• write = 2 (w=2, -=0)
• execute = 1 (x=1, -=0)

• chmod 777 = you, the group and everyone can read, write and execute.
• chmod 774 = you and the group can RWX, everyone else can only read
• chmod 644 = you can read and write, group and everyone only read
• chmod 400 = you can read, no one else can do anything

6

from HW3
• chmod 777 script
• this is plain text file and originally would have been
• “rw-r—r--“

• So by chmod 777 you are telling Unix that the file should be treated as
runnable. While that, the script is just a text file and will not be run.

• Consider the opposite
• gcc xx.c
• chmod 666 a.out
• ./a.out
• “permission denied”!

7

Recursion
• Used in HW3
• Not a huge shock, C has it
• You have used it.

• Max recursion depth
• Java ~ 10,000
• C dependent on memory

used

8

file: mdr.c

#include <stdio.h>

int rec(int d) {
 if (d>1000000)
 return 0;
 fprintf(stderr, "%d\n", d);
 return rec(d + 1);
}

int main(int argc, char const *argv[])
{
 rec(1);
 return 0;
}

Stack Frames
• Things on the call stack are “stack

frames”
• frames are “independent” of each

other.
• Communication is limited to

passed variables and return
values
• pass by reference

• Recursion limits:
• Java is based on number of

frames
• C based on total memory used

by frames
• main is itself a stack frame

9

int binarySearch(int arr[], int l, int r, int x, int rep) {
 printf("BSEARCH rep:%d low:%d high:%d\n", rep, l, r);
 if (r >= l) {
 int mid = l + (r - l)/2;
 // If the element is present at the middle itself
 if (arr[mid] == x) {
 void* callstack[128];
 int i, frames = backtrace(callstack, 128);
 char** strs = backtrace_symbols(callstack, frames);
 for (i = 0; i < frames; ++i) {
 printf("%s\n", strs[i]);
 }
 return mid;
 }
 // If element is smaller than mid, then it can only be present
 // in left subarray
 if (arr[mid] > x) return binarySearch(arr, l, mid-1, x, rep+1);
 return binarySearch(arr, mid+1, r, x, rep+1);
 }
 return -1;
}

Recursion and
tail recursion
• strcmp in <string.h>
• “tail recursion”
• the last thing done in

the recursion is the
recursive call AND
nothing is done to the
return value

10

#include <stdio.h>

int strcmprec(char * str1, char * str2) {
 if (*str1 == '\0') {
 return *str1 == *str2;
 }
 if (*str2 == '\0') {
 return 0;
 }
 if (*str1 != *str2)
 {
 return 0;
 }
 return strcmprec(++str1, ++str2);
}

int main(int argc, char const *argv[])
{
 printf("%s %s %s\n", argv[1], argv[2], strcmprec((char *)argv[1], (char *)argv[2]) ? "MATCH" :
"DO NOT match");
 return 0;
}

Why not str1++?

Tail Recursion
• Writing to avoid tail
recursion
• often just a matter
of passing down the
value to be returned

• Can always be re-
implemented as a loop
• why bother
• gcc -O2 will “optimize

tail recursion” 11

file: tr.c

int fibTR(int n1, int n2) {
 int n3 = n1 + n2;
 if (n3>1000)
 return 1;
 return 1 + fibTR(n2, n3);
}

int fibNTR(int n1, int n2, int i) {
 int n3 = n1 + n2;
 if (n3 > 1000)
 return i;
 return fibNTR(n2, n3, i + 1);
}

strtok, again
• strtok is useful for

parsing well structured
files,
• for instance, comma or

tab separated columns

12

//12:54 AM 73 F 65 F 76 % S 8 mph 0 mph 30.00 in 0.0 in
int main(void)
{
 char aa[512];
 while (NULL != fgets(aa, 1000, stdin))
 {
 fprintf(stderr, "%s\n", aa);
 char *tk = strtok(aa, "\t");
 fprintf(stderr, "Hello\n");
 fprintf(stderr, "%s\n", tk);
 while(1)
 {
 tk = strtok(NULL, "\t");
 if (tk==NULL)
 break;
 fprintf(stderr, "%s\n", tk);
 }
 }
}

NOT *tk !
Why?

more with Define
• In addition to simple

substitutions can
define functions

• WHY
• define functions are

NOT typed.

13

file: defsqr.c

#define SQR(x) (x*x)

int main(int argc, char const *argv[])
{
 double dd = 4.2;
 int ii = 12;
 printf("%f\n", SQR(dd));
 printf("%d\n", SQR(ii));
 return 0;
}

Lab
• Write a tail recursive and non-tail recursive version of a

factorial function
• factorial(3) = 3*2*1 = 6
• factorial(5) = 5*4*3*2*1 = 120

• Your factorial functions should return a number of type long

14

