
CS246
Unix: review

C: strtok, pointers
March 11

Lab
• Write a Makefile that

has 2 rules
• Rule 1. compile one

of the c programs
you wrote for
homework 2
• Rule 2. a “clean”

rule which deletes
a.out and any other
executables in the
directory

2

#makefile

cc
binsearch: binsearch.c
 gcc -o binsearch binsearch.c

clean:
 rm binsearch

UNIX: files and directories
• cd, pwd
• ls , ls -lart

• l — long
• a — all

• filenames that start with . are otherwise hidden
• t — sort by time
• r — reverse order

• absolute and relative file addressing
• / and the UNIX file structure

• ln — hard and soft links 3

Seeing files
• cat
• head, tail
• less — you can pipe into less, you cannot pipe out because it

does not write to stdout

• wc

4

IO redirection
• aaa < bbb.txt

• for the executable aaa, use the contents of file bbb.txt as stdin rather than the keyboard
• aaa > outfile.txt

• for the executable aaa put the output to stdout into the file outfile.txt rather than to the
console, REPLACE outfile.txt if it exists

• aaa >> outfile.txt
• for the executable aaa put the output to stdout into the file outfile.txt rather than to the

console, APPEND to outfile.txt if it exists
• aaa > outfile.txt 2>errfile.txt

• as above, but also put output to stderr into errfile.txt rather than the keyboard

• Importantly, in all of these cases the executable aaa does not know anything about this
redirection

5

Pipes
• Kind of like redirection but without the files
• |
• aaa | bbb
• aaa and bbb must both be executables
• take the output (to stdout) of aaa and rather than sending it

to the console make in the input (on stdin) to bbb
• Pipe sequences can be long
• aaa | bbb | ccc | ddd | eee …

6

Sort and grep
• sort

• a file or a pipe
• lots of options

• grep — find lines in txt
• Regular expressions

• letters
• .
• [abc]
• *, ? (and +)

• [abc]* vs .*
• ^ $

7

Command Line Args
• int main(int argc, char
const *argv[])
• argc	—	the	c	is	for	count	

• the	number	of	args	on	the	command	
line	PLUS	one	
• execut aaa bbb ccc

• argc	=	4	
• the	count	includes	the	
executable	

• argv	—	the	v	is	for	value	
• the	actual	values	of	the	command	
line	args	STARTING	WITH	THE	
executable	name 8

file: cla.c

#include <stdio.h>

int main(int argc, char const *argv[])
{
 for (int i = 0; i < argc; i++) {
 printf("%d %s\n", i, argv[i]);
 }
 return 0;
}

UNIX> gcc -o cla cla.c
UNIX> cla aaa bbb ccc
0 cla
1 aaa
2 bbb
3 ccc

Command Line Args
• char *argv[] ??????

• Recall array in C is just a pointer
• 2d array, still only a pointer

• int arr[5][3]
• arr[0]
• &(arr[0][0])

• all the same thing
• for an mD array, arr[N] pointer to the start of row N

• so a 2d array is an array of 5 pointers to arrays every one of which is of size 3
• But if you do not know the second dimension of 2d array you have an array of pointers to arrays.

• See, for example, p4.c
• That is what you have in *argv[]

• argc gives size of the [] array.
• In this case you may not have a single contiguous block of memory rather you have a block of

length argc containing pointers but each pointer could be to somewhere else.
• Q: how do we get away with not knowing length of the pointed to arrays in argv 9

file: p4.c

int main()
{
 int * a[2];
 int ab[5] = {0,1,2,3,4};
 a[0]=ab;
 int ac[9] = {0,1,2,3,4,5,6,7,8};
 a[1]=ac;
}

Arrays in Pictures

10

#define
• C compilation can be

concieved of as in 3 steps
• Preprocess
• compile
• link

• Preprocess
• finds defines and

substitutes into the code
• VERY different from
• static final vars in Java

11

cat p5.c
#define TWO 2
#define NINE 9
#define FIVE 5;
int main()
{
 int * a[TWO];
 int ab[FIVE] = {0,1,TWO,3,4};
 a[0]=ab;
 int ac[NINE] = {0,1,TWO,3,4,FIVE,6,7,NINE};
 a[TWO-1]=ac;
}

[gtowell@powerpuff L08]$ gcc -E p5.c
int main()
{
 int * a[2];
 int ab[5;] = {0,1,2,3,4};
 a[0]=ab;
 int ac[9] = {0,1,2,3,4,5;,6,7,9};
 a[2 -1]=ac;
}

printf and fprintf
• printf is just a shortcut for fprintf
• f prefix is short for File
• printf(“formatter”, arg, arg, …)
• fprintf(FILE*, “formatter”, arg, arg, …)
• FILE*
• stdout, stderr
• fopen(“AAA”, “w”)

• “formatter”
• %d, %f, %c, %s
• \n

12

C Strings
• DO NOT Exist
• But, by convention, strings:
• array of type char
• end of string signaled by \0

• lots of support in C for “strings”
• #include <string.h>
• printf “%s”

• Most/all of string.h is written in C
• Full definitions are all over the

internet

13

file: mystrlen.c

#include <stdio.h>
int strlenP(const char *strPtr) {
 int i = 0;
 while (*strPtr != '\0') {
 strPtr++; i++;
 }
 return i;
}
int strlenA(const char strArr[]) {
 int i = 0;
 while (strArr[i] != '\0') { i++; }
 return i;
}
int main(int argc, char const *argv[]) {
 for (int i = 0; i < argc; i++) {
 printf("%d %d %s\n", strlenP(argv[i]),
strlenA(argv[i]), argv[i]);
 } return 0; }

Java: “aaa,aaa,aaa”.split(‘,’)
• The java split command is computationally and memory intensive
• it takes one string and creates (from above) 3 new strings
• creating those three new strings takes time and memory
• How can we do better?

• Idea: Do something in place, so we get the effect of split without
the other parts
• concept: replace the splitting char (,) with \0
• after doing this, ask for next …. until there are no more

14

mystrtok usage
• initialize with string

(char array) and a char
on which to split
• returns the first piece
• actually a pointer

to the first piece
• subsequent calls pass

NULL for string to split!!!
• can change the

splitter on every call

15

file: mystrtok.c

int main(int argc, char const *argv[])
{
 char splitter = argv[1][0];
 char string[50] = "Tst,s1,Tst,s2:Test:s3";
 char *splitPiece;
 printf("String \"%s\" is split into tokens
using a single char in \"%c\":\n", string,
splitter);
 splitPiece = mystrtok(string, splitter); //
get first token
 printf("%s\n", splitPiece);
 // get subsequent tokens -- NOTE USE OF NULL
-- cannot split two string at same time
 while (NULL != (splitPiece = mystrtok(NULL,
splitter))) {
 printf("%s\n", splitPiece);
 }
}

mystrtok.c
• everything pointers!
• one global variable

holds the location in
current string of the
end of last token.
• Idea, search forward

in string for next
instance of token.
When found, change
that character to \0.

16

char * mystrtok_lastp;
char * mystrtok(char * string, char token) {
 if (string!=NULL) {
 mystrtok_lastp=string;
 } else {
 if (mystrtok_lastp==NULL) return NULL;
 mystrtok_lastp++;
 }
 char *holdp=mystrtok_lastp;
 char *nptr = mystrtok_lastp;
 while (*nptr!=token && *nptr!='\0') {
 nptr++;
 }
 if (*nptr=='\0') {
 mystrtok_lastp=NULL;
 } else {
 mystrtok_lastp=nptr;
 *nptr='\0';
 }
 return holdp;
}

mystrtok

17

mystrtok (and strtok)
• Good:
• In place
• Fast
• No wasted effort
• for instance, if call atoi on the string

• Bad:
• more work if you need to keep the string as a string
• strcpy

• NOT parallelizable (because of that external variable)

18

