
CS246
Unix: History

C: reading files, Pointers, Makefiles
March 8

Thursday’s Lab
• Lines containing z: “z”
• 2 instances of z: “z.*z”
• 2 non-consecutive instances of z: “z.*.z”, or “z..*z”
• At least 2 uppercase vowels: “[AEIOU]*[AEIOU]”
• 2 non-I uppercase vowels separated by 10 or more characters:

“[AEOU]………..*[AEOU]”
• some people found numeric quantifiers and wrote

• [AEOU].{10,}[AEOU]
• [AEOU].{10}.*[AEOU]

• fgrep, grep and egrep
• fgrep — basically no regular expression O(M+N)
• grep O(MN)
• egrep — extended regular expression syntax

2

Unix: History
• Shells remember what you have done
• up arrow to get previous command(s)

• Lines can be edited
• ctrl-a beginning of line
• ctrl-e end of line
• backspace delete prev char
• ctrl-d delete next char

• History goes back a ways
• shell dependent but often 500 or more

3

Unix : History
• UNIX> history

• command to show you all of the
previous commands remembers

• List is long
• how long??

• history | wc
• really boring to search with up

arrow!
• Use grep!!!
• history | grep grep

• shows all of my usages of
grep in the history

4

 492 gcc mystrcpy.c
 493 a.out
 494 gcc mystrcpy.c
 495 a.out
 496 exit
 497 ~/public/206/a4/dickens.txt | wc
 498 grep z..*z ~/public/206/a4/dickens.txt | wc
 499 exit
 500 grep z..*z ~/Public/206/a4/dickens.txt | wc
 501 grep z.+z ~/Public/206/a4/dickens.txt | wc
 502 grep "[^z]*z[^z]*z[^z]*" ~/Public/206/a4/dickens.txt
 503 grep "[^z]*z[^z]*z[^z]*" ~/Public/206/a4/dickens.txt | wc

UNIX: history
• If just want to repeat a command
• !123
• execute the command with number 123 in the history list

•

5

head, tail, and less
• “cat” is OK. It shows the file but it is inconvenient especially on big files

• less == cat with pagination
• spacebar == forward a page
• return == forward a line
• b == backward a page
• /xxx search for xxx

• head
• show the first 10 lines of file
• head -N == show the first N lines of file

• less
• show the last 10 lines of a file
• less -N

6

Reading Files
• fopen to read a file

• “r” means open for reading
• Style — I name all file vars

“f*” and try to avoid f* for
anything else

• Every call to fopen should be
followed by check to make sure
it worked
• fprintf “file printf”

• first param is the file to
print to

• Read just like reading from stdin
• stdin is a FILE*

• Everything opened must be
closed

7

file: OpenRead.c

int main(int argc, char const *argv[])
{
 FILE *fInput = fopen("OpenClose.c", "r");
 if (NULL == fInput) {
 fprintf(stderr, "Failed to open file for reading ... terminating\n");
 return 1;
 }
 char line[LINE_LEN];
 while (NULL != fgets(line, LINE_LEN, fInput)) {
 fprintf(stdout, "%s", line);
 }
 fclose(fInput);
 return 0;
}

Reading and Writing
• fopen

• “r” — read
• “w” — write
• “a” — append

• You can open a lot of FILE*
• there is a bound

• Again, looks almost identical to writing to
stdout
• This copier works only on text files
• fscanf and the buffer overflow attack

• so avoid use except, maybe, for
keyboard input
• problem, you really do not know

what stdin is reading from

8

file: OpenCopy.c

#define LINE_LEN 256
int main(int argc, char const *argv[])
{
 if (argc < 3) {
 printf("Usage: xxx existing_file_name name_of_copy");
 return 0;
 }
 FILE *fInput = fopen(argv[1], "r");
 if (NULL == fInput){
 fprintf(stderr, "Failed to open %s for reading ... terminating\n", argv[1]);
 return 1;
 }
 FILE *fOutput = fopen(argv[2], "w");
 if (NULL == fOutput){
 fprintf(stderr, "Failed to open %s for output ... terminating\n", argv[2]);
 return 1;
 }
 char line[LINE_LEN];
 while (NULL != fgets(line, LINE_LEN, fInput)) {
 fprintf(fOutput, "%s", line);
 }
 fclose(fInput);
 fclose(fOutput);
 return 0;
}

Returning multiple
values from a function
• C functions only return 1

value
• But can use PbR to get round

this limitation
• see also scanf

9

file:RetThree.c

int mreturn(int *i1, double *d1, float *f1);

int main(int argc, char const *argv[])
{
 int ival = 9;
 double dval = 12.0;
 float fval = 12.9f;
 printf("%7d %7.2f %7.2f\n", ival, dval, fval);
 mreturn(&ival, &dval, &fval);
 printf("%7d %7.2f %7.2f\n", ival, dval, fval);
 return 0;
}

int mreturn(int *i1, double* d1, float* f1) {
 *i1 = *i1 - 5;
 *d1 = *i1 / *d1;
 *f1 = *d1 * *f1;
}

Arrays, the C way
• recall that for an 2 dimensional array the location calculation is
• LOC = start + index2*RowLength*sizeof(storedThing) +

index1*sizeOf(storedThing)
• Thus every lookup in a 2d-array requires 2 adds and 3

multiplies
• 3-D: 6 multiplies and 3 adds
• 4-D: 10 multiplies and 4 adds
• etc
• (a smart compiler can reduce this in many circumstances)

10

C style Array access
• Use pointers!
• to advance through array, just

increment the pointer
• ++ moves the pointer

forward by sizeof(type)
• += N move forward by

N*sizeof(type)
• set through pointers also
• not shown here

11

file: Point1.c

int main(int argc, char const *argv[])
{
 int arr[10];
 for (int i = 0; i < 10; i++)
 arr[i] = i+100;

 int *arrp = arr;
 for (int i = 0; i < 10; i++) {
 printf("%d %d %12d\n", i, *arrp, arrp);
 arrp++;
 }
 return 0;
}

Pointer array access
in 2D
• need to know where you are
• ROW-MAJOR

• in a 2d array, to get the starting
point need the starting point of
a 1d array
• int arr[2][5];
• int *arrp = arr[0];

• while loop is more efficient form
for pointer move over array
• note *earr calculation

12

file: Point2.c

int main(int argc, char const *argv[])
{
 int arr[2][5];
 for (int i = 0; i < 2; i++)
 for (int j = 0; j < 5; j++)
 arr[i][j] = i*100 +j;

 int *arrp = arr[0];
 for (int i = 0; i < 10; i++) {
 printf("%5d %5d %12d\n", i, *arrp, arrp);
 arrp++;
 }
 int *parr = arr[0];
 int *earr = parr + (2 * 5);
 while (parr < earr) {
 printf("%5c %5d %12d\n", ' ', *parr, parr);
 parr++;
 }

Speed of Pointers vs array access
• For common array operations a modern compiler

can optimize array access so much that using
pointers is slower!
• Once upon a time this was always a big win

• Now you have to work harder for the win.
• and the win is often small
• But it can be big

• Lesson:
• if you are doing things with arrays that use

conventional indices, then use array notation
• But think about being tricky with pointers if

you really need the speed

13

Point3speed1.c
array indices are faster
by about 15%

Point3speed2.c
pointers are faster
by about 5%

Point3speed3.c
pointers are faster by
about 20%

Splitting c across files and Makefiles
• Recall the problem of splitting files and building
• Consider Point3speed3.c

• break it up in to 2 .c file and a .h
• splitM.c

• only main and the global array
• splitF.c

• the other functions
• split.h

• the defines
• function signatures for splitF

• only need those used in main
• the global array from splitM

14

file: split.h

#define D1 100
#define D2 100
#define D3 100
#define COLUM "%10.6f"

extern int arr[D1][D2][D3];

void t1();
void t2();

Compiling and makefiles
• Then to compile:
 gcc -c splitF.c
 gcc -c splitM.c
 gcc -o split splitM.o splitF.o

•	When	there	are	only	two	files	remembering	all	the	steps	is	not	hard.	When	there	
are	200	(or	more)	it	gets	really	hard	
•Java:	in	the	first	pass	through,	the	java	compiler	figures	out	what	is	dependent	on	
which	and	what	has	changed	
•In	second	pass	(re)compile	as	necessary	

•Makefiles		
•a	manual	setup	for	what	Java	does	

•(Many	IDE’s	will	generate	makefiles)

15

Makefiles
• usually in a file named “makefile”
• invoked by Unix command “make”

• make -f “file name other then makefile”

• A simple makefile consists of “rules” which are followed by “actions”

• A rule looks like
• name: [dependency]*

• that is a name followed by a list of 0 or more dependencies
• name may either be a useful identifier or the name of a file
• a dependency is either a file name or a rule name

• Actions
• actions must be indented with a tab
• are one or more unix actions
• must be separated from the next rule by a blank line 16

Makefile rules and dependencies
• Rules detemine if they need to be invoked

• if the dependency is a name that is not the name of a
file
• the rule will be invoked

• if the name is that of a file:
• if dependency is a file

• the dependency file has changed more
recently than the named file

• if the dependency is another name
• that rule determines that it must be invoked

• For example, to determine if the rule “splitF.o” should be
invoked, compare the modification dates of splitF.c split.h
to the file splitF.o
• if either is newer, then this rule is invoked

17

splitF.o: splitF.c split.h
 gcc -c splitF.c

Makefile for split
• makefile may also define constants for use in

the makefile
• for instance first two lines at right

• full command to invoke
• make -f makefile split

• default is to use makefile or Makefile
• normally -f is unnecessary

• default is to use first rule
• so just “make” in this case

• rule submit:
• no dependencies so just do it

• the “cd ..” is not permanent; its effect
does not extend beyond the line it is
on. 18

file: makefile

var = $(notdir $(CURDIR))
cc = gcc

split: splitM.o splitF.o
 $(cc) -o split splitM.o splitF.o

splitF.o: splitF.c split.h
 $(cc) -c splitF.c

splitM.o: splitM.c split.h
 $(cc) -c splitM.c

submit:
 cd ..; /home/gtowell/bin/submit -c 246
-p 20 -d $(var)

Lab
• Write a Makefile that has 2 rules
• Rule 1. a compile rule that compiles at least one of the c programs

you wrote for homework 2
• Rule 2. a “clean” rule which deletes a.out and any other executables

in the directory
• you can, and should, just hard code in the names of the other

executables to be deleted
• The compile rule should be the default

• If your make file is more than 6 lines long, you are probably doing
something wrong.

19

