
CS246
Unix: grep

C: pass by value, references
March 4

grep

• One of the most used Unix utilities
• Idea: from standard input (or file) find lines that contain a “regular expression”

• or just a string
• Example

• LS -R — recursively list all files
• ls -R | grep c

• finds all files with the letter c
• grep Darcy ~/public/206/a4/janeausten.txt

• find all lines that contain “Copperfield” in my dickens collection
• really long so

• grep Darcy ~/public/206/a4/janeausten.txt | wc

2

Global Regular Expression Print

the RE part of gREp
• Regular expression
• a way of allowing for broader classes of matches
• Anchors
• ^ the beginning of a line
• show only directories in ls
• ls -l | grep ^d

• $ the end of the line
• show all files in ls that end in s
• ls -l | grep s$

3

the RE part of gREp
• . — any single character

• find all lines containing d, two characters, y
• grep “d..y” Public/206/a4/janeausten.txt

• [] a character group — match to any single character in group
• find all lines containing d, a vowel, y

• grep “d[aeiou]y” Public/206/a4/janeausten.txt
• find all lines containing d, a letter, y

• grep “d[a-z]y” ..
• Same but case insensitive

• grep “[dD][a-zA-Z][yY]” …
• grep -i “d[a-z]y” …

4

the RE part of gREp
• Quantifiers

• Apply to the previous character (or group)
• * — match to 0 or more

• .* == match to 0 or more occurrences of any letter
• d.*y matches dy, day, dly, d_y, duly, daddy, …

• ? — 0 or 1
• a? == match to a string that has 0 or 1 a

• da?y matches dy, day
• + — 1 or more

• [a-z]+ one or more instances of any lower case letter
• d[a-z]+y matches day,dly, daddy, …

5

grep — escapes and quotes
• suppose you want to find a line containing . *, or +, or [, or any other character used

specially in regular expressions
• precede that char with \

• sometimes called the “escape character”
• Find all lines containing the character “.”

• grep “\.” dickens.txt
• It is often important — and never wrong — to put REs in quotes

• grep “\.” dickens.txt — lines containing a .
• grep \. dickens.txt — every line in the file

• without quotes characters can get interpreted by the shell
• grep * dickens.txt

• the * is interpreted by the shell to be a filename expansion operator
• e.g. grep dickens *.txt

6

LAB from Monday
• Write your own implementation of strcpy
• void strcpy(int destLen, char dest[destLen], char
source[]);

7

void strcpyGT(int ll, char tgt[ll], char src[]) {
 int i = 0;
 for (; i < ll - 1 && src[i] != '\0'; i++) {
 tgt[i] = src[i];
 }
 tgt[i] = ‘\0';
}
int main(int argc, char const *argv[]) {
 char line[LINE_LEN];
 while (fgets(line, LINE_LEN, stdin) != NULL) {
 char copy[LINE_LEN];
 for (int i = 0; i < LINE_LEN; i++) copy[i] = 'z';
 strcpyGT(LINE_LEN, copy, line);
 printf("%d %d %s %s>>>\n", strlen(line), strlen(copy), line, copy);
 }
 return 0;
}

What happens without this???

Homework 3
• posted on class website
• timing — see code in timer.c for today’s lecture for 3(!)

different ways of timing

8

Pass by value vs Pass by Reference
• Function Calls
• Pass by value
• make a copy and work with

that
• changes inside function do

not affect outside
• Pass by reference
• Work with the same exact thing
• Change inside function change

the outside
9

PbV or PbR
• Which
• Java
• PbV on primitive types
• PbR on objects

• C
• PbV on basically everything
• BUT there is an catch

10

PbV or PbR
• Why do I care
• The effect of changing values in functions
• javascript “vars” are effectively PbR

• Speed & memory
• PbR faster and more memory efficient
• PbV “safer”?
• NO side effect programming

11

& operator
• the “address” operator
• The memory address of

the variable
• Using & can really observe

PbV in action

• Program at right one global
variable and a function with
no args
• What is the output?

12

file: p1.c

int gi = 5;

void t()
{
 printf("TF %d %d\n", gi, &gi);
 gi = 7;
 printf("TF2 %d %d\n", gi, &gi);
 return;
}

int main(void)
{
 printf("TM %d %d\n", gi, &gi);
 t();
 printf("TM2 %d %d\n", gi, &gi);
}

Show the
address in
memory as an
integer

PbV
• Output here?

13

file: p2.c

void t()
{
 printf("TF %d %d\n", gi, &gi);
 gi = 7;
 return;
}

int main(void)
{
 int gi = 5;
 printf("TM %d %d\n", gi, &gi);
 t();
 printf("TM2 %d %d\n", gi, &gi);
}

PbV
• Finally, passing a

variable
• memory location

of gi in t is
different from in
main
• Visible

manifestation of
PbV

14

file p3.c

void t(int gi)
{
 printf("TF %d %d\n", gi, &gi);
 gi = 7;
 printf("TF2 %d\n", gi, &gi);
 return;
}

int main(void)
{
 int gi = 5;
 printf("TM %d %d\n", gi, &gi);
 t(gi);
 printf("TM2 %d\n", gi);
}

Return
• is also by value
• Must be else you would

be getting a memory
location from a stack
frame that no longer
exists

15

file: p4.c

int t(int gi)
{
 printf("TF %d %d\n", gi, &gi);
 gi = 7;
 printf("TF2 %d %d\n", gi, &gi);
 return gi;
}

int main(void)
{
 int gi = 5;
 printf("TM %d %d\n", gi, &gi);
 int gii = t(gi);
 printf("TM2 %d %d\n", gii, &gii);
}

Pointer types
• int *p;
• holds a pointer to an integer
• this declaration is not pointing to

anything
• must point to a thing of the type

• All pointers are exactly the same size
• Actually all pointers are exactly the same
• So why the restriction that the pointer

MUST point to something of it declared
type?

16

int gi = 5;
int *pgi1 = &gi;
int* pgi2 = &gi;
int * pgi3 = &gi;

Create a variable, gi, then
create two variables that hold
a pointer to gi.

VSC prefers first form

* Operator
• * is also called the

“indirection” operator
• IMPORTANT

• * operator is not * in
type declarations and is
not multiply.

• horrific
• * operator works ONLY on

pointer types
• compile error

• when you have a pointer
• use * to mean “the value

of the thing pointed to”
• This is logic behind

calling * an “indirection”
operator

17

file: p5.c

int main(void)
{
 int giv = 5;
 int *gip = &giv;
 printf("TM1%5d%12d%12d\n", giv, &giv, gip);
 *gip = 7; // set value into the pointer
 printf("TM2%5d%12d%12d%5d\n", giv, &giv, gip, *gip);
 // set value into the memory address
 //parens are required
 *(&giv) = 9;
 printf("TM2%5d%12d%12d%5d\n", giv, &giv, gip, *gip);
}

Finally, PbR in C
• To get Pass by Reference

in C
• pass a pointer
• use indirection

operator to set the
value into pointer

• Used this in HW1!
• scanf

18

file: p6.c

void t(int *gip) {
 printf("TT1%5d%12d\n", *gip, gip);
 *gip = 7;
 printf("TT1%5d%12d\n", *gip, gip);
}
int main(int argc, char const *argv[])
{
 int giv = 3;
 printf("TM1%5d%12d\n", giv, &giv);
 t(&giv);
 printf("TM2%5d%12d\n", giv, &giv);
 return 0;
}

Pointer and Casting
• Because all pointers are the

same you can freely cast
pointers to other types.
• Setting/reading — not so

much
• Consider java
• String s = new String(“A”);
Integer i = (Integer)s;
• kind of legal to do but a

bad idea

19

file: p7.c

int main(void)
{
 int iint = 5;
 int *intp = &iint;
 printf("T1int%12d%12d\n", iint, intp);
 *intp = 999999;
 printf("T2int%12d%12d\n", iint, intp);
 char *chrp = (char *)intp;
 *chrp = 'a';
 printf("T3chr%12c%12d\n", *chrp, chrp);
 printf("T3int%12d%12d\n", *intp, intp);

}

Pointers and arrays
• Arrays are already

pointers!
• So with array you

are doing PbR

20

file: p10.c

void parray(char id, int asz, int arr[asz]) {
 for (int i = 0; i < 10; i++)
 printf("%1c%3d%12d%12d%5d\n", id, i,
arr, &arr[i], arr[i]);
}

int main(void)
{
 int a[10];
 for (int i = 0; i < 10; i++)
 a[i] = (i*29) % 17;
 char id = 'M';
 for (int i = 0; i < 10; i++)
 printf("%1c%3d%12d%12d%5d\n", id, i, a,
&a[i], a[i]);
 parray('A', 10, a);
}

Lab — Regular Expressions
• Write regular expressions you could use in grep to find

• Note that to actually use some of these REs with grep, use quotes
• all lines with the character z
• all lines with at least 2 instances of the character z
• all lines with 2 z’s with at least one character between

• so pizza would not match but pizzaz would
• all lines that have at least 2 upper case vowels
• all lines that have 2 upper case vowels (but not I) separated by 10 more more

characters (an upper case vowel could be one of intervening characters.
• If you use /home/gtowell/Public/206/a4/dickens.txt for a test file then these are the

number of lines that each grep should find
• z: 3909, 2 z’s: 976, 2 z’s with a separator: 143, 2 UC vowels: 23877, 2 UC vowels,

but not I, separated by at least 10 chars: 2967
• All I need is the 5 regular expressions, but showing the grep commands is OK also. Do

NOT send complete results of each grep.
21

