
CMSC 246: Systems
Programming

Spring 2021

Feb 22

Unix — Paths and IO
• absolute paths
• start with /
• the ‘root’ of the directory

tree
• relative paths
• anything that is not absolute
• “relative” meaning w.r.t your

current location
• “.” here
• “..” one directory up

2

pwd
 /home/gtowell
cd 246
cd ./246
cd ../gtowell/246
cd ../gtowell/../gtowell/246

#suppose a file named aaa
#exists in /home/gtowell
pwd
 /home/gtowell/246
cp ../aaa aaa
cp ./../aaa aaa
cp ../../gtowell/aaa aaa
cp /home/gtowell/aaa aaa
cp ../aaa .

IO redirection
• On Thursday

• “standard in defaults to keyboard, standard
out to console.”

• Override sidin, stdout, stderr
• Pipes | (only stdin and stdout)

• showed in first class
• before a func, standard input
• after a func, standard output

• Overrides < >
• always after
• < takes standard input
• > takes standard output, writes to a file
• >> takes standard output, appends to file
• 2> takes standard error

• Examples: cat, wc and echo

3

 ~ % cat > aaa
dfjds dfdsf rte dfsd
dfdsf fsdf sdfsd kl
dsfsdf
 ~ % wc aaa
 3 9 48 aaa
 ~ % wc < aaa
 3 9 48
 ~ % cat aaa | wc
 3 9 48
 ~ % echo "this is a test"
this is a test
 ~ % echo "this is a test" > bbb
 ~ % cat bbb
this is a test
 ~ % wc < bbb
 1 4 15
 ~ % wc < bbb > bbbwc
 ~ % cat bbbwc
 1 4 15
 ~ %

CTRL-d to
end input

cat with no args
reads from stdin

Keywords
• The following keywords can’t be used as identifiers:
 auto enum restrict* unsigned
 break extern return void
 case float short volatile
 char for signed while
 const goto sizeof _Bool*
 continue if static _Complex*
 default inline* struct _Imaginary*
 do int switch
 double long typedef
 else register union

• Keywords (with the exception of _Bool, _Complex, and _Imaginary)
must be written using only lower-case letters.
• Names of library functions (e.g., printf) are also lower-case.
• You can overwrite any library function … don’t

4

Shooting yourself in the foot
• APL

◦ You shoot yourself in the foot and then spend all day figuring out how to do it in fewer characters.
◦ You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened.
◦ @#&^$%&%^ foot

• C
• You shoot yourself in the foot and then nobody else can figure out what you did.

Java
• You write a program to shoot yourself in the foot and put it on the Internet. People all over the world shoot themselves in the foot, and everyone leaves

your website hobbling and cursing.
• You amputate your foot at the ankle with a fourteen-pound hacksaw, but you can do it on any platform.

• Lisp
◦ You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you

shoot yourself in the appendage which holds the gun with which you shoot...
◦ You attempt to shoot yourself in the foot, but the gun jams on a stray parenthesis.

• Linux
◦ You shoot yourself in the foot with a Gnu.

Perl
• You separate the bullet from the gun with a hyperoptimized regexp, and then you transport it to your foot using several typeglobs. However, the program

fails to run and you can't correct it since you don't understand what the hell it is you've written.
• You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife.
• You shoot yourself in the foot and then decide it was so much fun that you invent another six completely different ways to do it.

Python
• You shoot yourself in the foot and then brag for hours about how much more elegantly you did it than if you had been using C or (God forbid) Perl.

◦

5

If and Switch statements in C
• A compound statement has the form
 { statements }

• In its simplest form, the if statement has the form
 if (expression) compound|statement

if (1==2) {
printf(“Unlikely”);

}
is equivalent to

if (1==2)
printf(“Unlikely”)’

• An if statement may have an else clause:
 if (expression) compound/statement else compound|statement

• Most common form of the switch statement:
 switch (expression) {
 case constant-expression : statements
 …
 case constant-expression : statements
 default : statements
 }

6

Arithmetic Operators
• C provides five binary arithmetic operators:
 + addition
 - subtraction
 * multiplication
 / division
 % remainder

• An operator is binary if it has two operands.
• There are also two unary arithmetic operators:
 + unary plus
 - unary minus

7

Logical Expressions
• Several of C’s statements must test the value of an expression

to see if it is “true” or “false.”
• In many programming languages, an expression such as i < j

would have a special “Boolean” or “logical” type.
• In C, a comparison such as i < j yields an integer: either 0

(false) or 1 (true).

8

Relational Operators
• C’s relational operators:
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
• C provides two equality operators:
 == equal to
 != not equal to
• More complicated logical expressions can be built from simpler ones by

using the logical operators:
 ! logical negation
 && logical and
 || logical or

These operators produce 0 (false) or 1 (true) when used in expressions.

9

Logical Operators
• Both && and || perform “short-circuit” evaluation: they first evaluate the left

operand, then the right one.
• If the value of the expression can be deduced from the left operand alone, the right

operand isn’t evaluated.
• Example:
 (0 != i) && (j / i > 0)

 (0 != i) is evaluated first. If i isn’t equal to 0, then (j / i > 0) is evaluated.
• If i is 0, the entire expression must be false, so there’s no need to evaluate (j / i >
0). Without short-circuit evaluation, division by zero would have occurred.
• if (i=5) … is LEGAL in C! (and is almost always a mistake)

• it sets i to 5 AND returns 5 which is NOT 0 so TRUE
• Best practice: always put constants on LHS of comparison

• if (5=i) // NOT LEGAL

10

Relational Operators & Lack of Boolean
Watch out!!!
• The expression
 i < j < k

 is legal, but does not test whether j lies between i and k.
• Since the < operator is left associative, this expression is

equivalent to
 (i < j) < k

 The 1 or 0 produced by i < j is then compared to k.
• The correct expression is i < j && j < k.

11

Loops
• The while statement has the form
 while (expression) statement|compound

• General form of the do statement:

 do statement while (expression) ;
• General form of the for statement:
 for (expr1 ; expr2 ; expr3) statement|compound
 expr1, expr2, and expr3 are expressions.
• Example:
 for (i = 10; i > 0; i--)
 printf("T minus %d and counting\n”, i);

• Variables can be declared within for
 for (int i = 0; i < n; i++)
 …

for (;;;) {} is	equivalent	to while (1) {}

12

The printf Function
• No string concatenation within printf
printf("AAA" + “BBB"); //WRONG
• Ordinary characters in a format string are printed as they appear in the string;
• Conversion specifiers start with %

• conversion specifications are replaced.
• Example:
 int i, j;
 float x, y;

 i = 10;
 j = 20;
 x = 43.2892f;
 y = 5527.0f;

 printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:
 i = 10, j = 20, x = 43.289200, y = 5527.000000

Every	conversion	specifier	can	include	its	width.	e.g. %10d
%f can	specify	precision	as	well %10.2f 13

The printf Function
• Compilers aren’t required to check that the number of

conversion specifications in a format string matches the
number of output items.
• Java String.format() does check for match
• Too many conversion specifications:
 printf("%d %d\n", i); /*** WRONG ***/

• Too few conversion specifications:
 printf("%d\n", i, j); /*** WRONG ***/

14

The printf Function
• Compilers aren’t required to check that a conversion

specification is appropriate.
• If the programmer uses an incorrect specification, the program

will produce meaningless output:
 printf("%f %d\n", i, x); /*** WRONG ***/

15

Making a well formatted table
• printf used a monospaced font
• decide number of characters each column in table needs
• for floating point number decide correct precision
• eg. for money: 2 after the decimal point

• Always use printf formatting

• Use #define for format strings

16

 printf("%3s%3s\n", "a", "b");
 printf(" a b\n");

My Fibonacci program

17

#include <stdio.h>
#define HEADER "%6s%9s%9s%9s%9s\n"
#define DATA "%6d%9d%9d%9d%9.5f\n"

void doTheFibb(int maxVal) {
 int f1 = 1;
 int f2 = 1;
 int n = 2;
 printf(HEADER, "", "fibb", "fibb", "fibb", "golden");
 printf(HEADER, "index", "n -2", "n -1", "n", "mean");
 while (f1 < maxVal)
 {
 n++;
 int f3 = f2 + f1;
 printf(DATA, n, f1, f2, f3, (float)f3 / f2);
 f1 = f2;
 f2 = f3;
 }}
int main(int argc, char const *argv[]) {
 doTheFibb(100000);
 return 0;
}

Ints and Chars
• Ints and chars in C can be used fairly

interchangably
• A char is an int stored in a single byte
• The int representation of a char is from

the ASCII table
• 'a' == 'b'-1

18

int main(void)
{
 while (1) {

 char c = getchar();
 if (EOF==c)
 break;
 int i = (int)c;
 char cc = (char)i;
 printf("before:%c as int:%d after:%c\n", c, i, cc);
 printf("Printing a char: as char:%c as int:%d\n", c, c);
 printf("Printing an int: as char:%c as int:%d\n", i, i);
 }
}

ASCII
Table

19

Integer Types
• byte, short, int, long,

• Integer representation — “twos
complement”
• so 1+maxPositive ==> maxNegative

• unsigned keyword — positive only
numbers
• 1+maxPositive==>0;

20

base 10 in bits
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
-8 1000
-7 1001

If there were 4 bit numbers

LAB
• Write a program with two loops:

• First loop:reproduce the “dec” and “char” columns of the ASCII table for
decimal values 33 - 126
• Second loop. A single loop from 0..25 to produce the following table:

• 0 A a  
1 B b  
2 C c  
…  
25 Z z

• You can do this using your knowledge of addition and the ASCII table.

• This program should have exactly 2 printf statements.

21

More on links
• ln [-s] filename linkname

• ls -l
• ls -i — show the inode

• Change aaaa both hard and soft
have the change
• Delete aaaa

• hard
• No change!

• soft
• dead link!

22

gtowell@mil:~$ cat > aaaa
this is a test
gtowell@mil:~$ ln aaaa aaaa_hard
gtowell@mil:~$ ln -s aaaa aaaa_soft
gtowell@mil:~$ ls -l aaaa*
-rw-r--r-- 2 gtowell faculty 15 Feb 19 18:49 aaaa
-rw-r--r-- 2 gtowell faculty 15 Feb 19 18:49
aaaa_hard
lrwxrwxrwx 1 gtowell faculty 9 Feb 19 18:49 aaaa
-> aaaa_soft
gtowell@mil:~$ ls -i aaaa*
169088825 aaaa 169088825 aaaa_hard
169088827 aaaa_soft
gtowell@mil:~$ rm aaaa
gtowell@mil:~$ cat aaaa_hard
thatt this is a test
gtowell@mil:~$ cat aaaa_soft
cat: aaaa_soft: No such file or directory

Create a file named “aaaa” and
put from keyboard into it

How scanf Works
• Sample input:
 1-20.3-4.0e3¤

• The call of scanf is the same as before:
 scanf("%d%d%f%f", &i, &j, &x, &y);

• Here’s how scanf would process the new input:
• %d. Stores 1 into i and puts the - character back.
• %d. Stores –20 into j and puts the . character back.
• %f. Stores 0.3 into x and puts the - character back.
• %f. Stores –4.0 × 103 into y and puts the new-line character back.

23

Confusing printf with scanf
• Although calls of scanf and printf may appear similar, there

are significant differences between the two.
• One common mistake is to put & in front of variables in a call

of printf:
 printf("%d %d\n", &i, &j); /*** WRONG ***/

24

Confusing printf with scanf
• Incorrectly assuming that scanf format strings should

resemble printf format strings is another common error.
• Consider the following call of scanf:
 scanf("%d, %d", &i, &j);
• scanf will first look for an integer in the input, which it stores in the

variable i.
• scanf will then try to match a comma with the next input character.
• If the next input character is a space, not a comma, scanf will

terminate without reading a value for j.

25

Program: Adding Fractions
• The addfrac.c program prompts the user to enter two

fractions and then displays their sum.
• Sample program output:
 Enter first fraction: 5/6
 Enter second fraction: 3/4
 The sum is 38/24

26

addfrac.c
/* Adds two fractions */

#include <stdio.h>

int main(void)
{
 int num1, denom1, num2, denom2, result_num, result_denom;

 printf("Enter first fraction: ");
 scanf("%d/%d", &num1, &denom1);

 printf("Enter second fraction: ");
 scanf("%d/%d", &num2, &denom2);

 result_num = num1 * denom2 + num2 *denom1;
 result_denom = denom1 * denom2;
 printf("The sum is %d/%d\n",result_num, result_denom)

 return 0;
}

27

Typical Unix directories
• / the beginning - the root
• /bin — executables
• /home — user directories
• /lib — libraries

• parts of executables
• usually a .so extension eg libc.so

• this is the library that from “gcc -lc -xc xxx.c”
• /usr —

• things that are also in /
• /usr/bin, /usr/include, …

• /usr/local — stuff NOT in standard UNIX …
• /proc

• NOT actual files
• /proc/cpuinfo, /proc/stat

28

Files and Hard/Soft Links
• in addition to files and
• directories, Unix has “links”
• Hard links
• only to files
• only within file systems
• effectively creates a second user of disk space

• Soft links
• files and directories
• links to the file itself, not the disk space
• dangling links

29

