CS206

Search Trees, AVL Trees
Binary Search Trees

- For all nodes
 - The left node is less than parent
 - The right node is greater than parent
Binary Search Trees

- Performance is directly affected by the height of tree
- All operations are $O(h)$
- $h = O(n)$ worst case
- $h = O(\log n)$ best case
- Expected $O(\log n)$ if tree is “balanced”
 - balance — generally same number of nodes in left and right subtrees
Balanced Search Trees

- A variety of algorithms that augment a standard BST with occasional operations to reshape, reduce height and maintain balance.
- General approach == Rotation: move a child to be above its parent, then relink subtrees to maintain BST order

\[O(1) \]
Tree Rotation

- Rotation can be to the right or left
- Rotate reduces/increases the depth of nodes in subtrees T_1 and T_3 by 1
- Rotation maintains BST order
- One or more rotations can be combined to provide broader rebalancing
AVL Tree

- Adelson-Velski and Landis (1962)
- Height-balance property
 - For every internal node, the heights of the two children differ by at most 1
- Any binary tree satisfying the height-balance property is an AVL tree
- A height-balanced tree has height $O(\lg n)$
 - max height is provably $1.44*\lg(n)$
 - see book pg 481 for proof (kind of)
AVL Tree Example
Insertion

• Maintain with each node the height of its subtree.
• On insertion, first recur down through tree to insert.
• Then as you unwind recursion, update the height of each node.
• If height changes, check the height of other child
 • if not in balance then fix
Insertion code to maintain height
(the only code today!!!)

// assumes public insert from linked binary tree
private int iInsert(Node treepart, E toBeAdded) {
 int cmp =
treepart.element.compareTo(toBeAdded);
 if (cmp==0)
 return -11111; // the item is in the tree
 int dpth=1;
 if (cmp<0) {
 if (treepart.left==null)
 treepart.left=new Node(toBeAdded);
 else
 dpth = 1 + iInsert(treepart.left, toBeAdded);
 } else {
 if (treepart.right==null)
 treepart.right=new Node(toBeAdded);
 else
 dpth = 1 + iInsert(treepart.right, toBeAdded);
 }
 treepart.height=treepart.height>dpth?treepart.height:dpth;
 return treepart.height;
}
Fixing height imbalances
Rotation!!

• Two types of rotation
• Single
 • left subtree of left node causes imbalance
 • right subtree of right node causes imbalance
• Double
 • right subtree of left node causes imbalance
 • left subtree of right node causes imbalance
AVL Animation
Deletion

• Deletion removes a node with 0 or 1 child
 • recall deletion from binary tree for node with 2 children.
• Deletion may reduce the height of parent
• Rotate to rebalance just like insertion
$O(\log n)$ Rotations

- Unlike insertion where rotation of the nearest unbalanced ancestor restores the balance globally.
- On deletion, rotation of the nearest unbalanced ancestor only guarantees balance locally to the subtree.
- Worst-case requires $O(\log n)$ rotations up the tree to restore balance globally.