Array-based Heaps
Upheap

- Restore heap order
 - swap upwards
 - stop when finding a smaller parent
 - or reach root
- $O(\log n)$
Downheap

- Restore heap order
 - swap downwards
 - swap with smaller child
 - stop when finding larger children
 - or reach a leaf

- $O(\log n)$
General Removal

- swap with last node
- delete last node
- may need to upheap or downheap

Heap:

```
  1
 / 
5 6
/   
9 11
/   / 
8 15 17
/     
17 21
```

```
  1
 / 
22 33
/   
17 27
```

(delete this node)

(delete this node)
Array-based Heap

- Heap is a complete binary tree, thus is particularly suited for array-based implementation

- Array/ArrayList of length n for heap with n keys

- node at index i
 - left child $2i + 1$
 - right child $2i + 2$

- peek – element at 0
- poll – remove 0
- no links/references stored
Array-based Binary Tree

- The numbering can then be used as indices for storing the nodes directly in an array.
Heap-based PriorityQueue

```java
public class ArrayHeap<E extends Comparable<E>> extends ArrayBinaryTree<E> implements PriorityQueue<E>{
    E peek();
    E poll();
}
```

Write poll at chalkboard
Update Key

• What should happen when you change the key of an existing element in a heap?

• What are the cases?
 □ increaseKey
 □ decreaseKey
Merging Two Heaps

- Given two heaps and a new key k
- Create a new heap with k as root and the two heaps as subtrees
- downheap on k to restore heap order
- $O(\log n)$
Bottom-up Construction

• Complexity of constructing a heap with n elements?
 ▫ Call insert n times - $O(n \log n)$
 ▫ When does $O(n \log n)$ occur?

• More efficient alternative
 1. construct $(n + 1)/2$ elementary heaps storing one entry each
 2. merge pairwise into $(n + 1)/4$ larger heaps
heapify
heapify
Analysis

• \(n/4 + n/8 + \ldots + 1 = O(n) \) merges
 • but \(O() \) ignores constants
 • \(O(n) \) yes, but really \(n/2 \) merges
• Each merge is \(O(\log n) \) which would suggest \(O(n\log n) \)
 • but first merge cost is 1 comparison
 • figuring the max number of comparisons for each merge
• \(n/4*1 + n/8*2 + n/16*3 \ldots + 1*\log n = O(n) \)