CS206

Priority Queues
Performance of Trees

<table>
<thead>
<tr>
<th></th>
<th>Complete Tree</th>
<th>Worst Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create a dataset to make the worst possible tree
Priority Queue

• A queue that maintains order of elements according to some priority
 • Removal order, not general order
 • the rest may or may not be sorted

• Types of PQs
 • min PQ — the element with smallest key is removed first
 • max PQ — the largest is removed first

• Consider a PQ in which priority is based on insertion time
 • min PQ == ??
 • max PQ== ??
Key

• Priority queues are ordered by some key, which may be:
 • derived from the data element
 • one field
 • combination of fields
 • independent of data element
 • for example: insertion time
• best practice is to define relation between keys using `compareTo`
• Changing `compareTo` allows changing the priority queue ordering while changing nothing else
Key-Value Pair

- Typically think of PQ as containing a pair
 - (Key, Value)
 - Key defines priority
 - Value is data the objects store
- KV pairs are frequently used
- Ideally keys are unique
 - how to handle duplicate keys?
- Ideally keys have a natural ordering.
 - Using `compareTo` allows arbitrary comparisons
- Values need not be numerical or unique
Example - minPQ

<table>
<thead>
<tr>
<th>Method</th>
<th>Return Value</th>
<th>Priority Queue Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>insert(5,A)</code></td>
<td></td>
<td><code>{ (5,A) }</code></td>
</tr>
<tr>
<td><code>insert(9,C)</code></td>
<td></td>
<td><code>{ (5,A), (9,C) }</code></td>
</tr>
<tr>
<td><code>insert(3,B)</code></td>
<td></td>
<td><code>{ (3,B), (5,A), (9,C) }</code></td>
</tr>
<tr>
<td><code>min()</code></td>
<td>(3,B)</td>
<td><code>{ (3,B), (5,A), (9,C) }</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>{ (5,A), (9,C) }</code></td>
</tr>
<tr>
<td><code>removeMin()</code></td>
<td>(5,A)</td>
<td><code>{ (5,A), (7,D), (9,C) }</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>{ (7,D), (9,C) }</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>{ (9,C) }</code></td>
</tr>
<tr>
<td><code>removeMin()</code></td>
<td>(7,D)</td>
<td><code>{ }</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>{ }</code></td>
</tr>
<tr>
<td><code>removeMin()</code></td>
<td>(9,C)</td>
<td><code>{ }</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>{ }</code></td>
</tr>
<tr>
<td><code>isEmpty()</code></td>
<td>true</td>
<td><code>{ }</code></td>
</tr>
</tbody>
</table>
public interface PriorityQueueInterface<E extends Comparable<E>> extends BinaryTreeInterface<E> {
 E getRootElement();
 int size();
 boolean isEmpty();
 boolean contains(E element);
 void insert(E element);
 boolean remove(E element);
 E peek(); // look at min/max; do not remove
 E poll(); // removeMin/removeMax;
}
How do we implement it?

• Efficiency depends on implementation

<table>
<thead>
<tr>
<th></th>
<th>Unsorted array</th>
<th>Unsorted list</th>
<th>Sorted array</th>
<th>Sorted list</th>
</tr>
</thead>
<tbody>
<tr>
<td>peek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poll</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Remove may apply to any element, poll just to the “first”
Priority Queue Sort

- Sorting using a priority queue
 1. Insert with a series of `insert` operations
 2. Remove in sorted order with a series of `poll` operations
- Efficiency depends on implementation and runtime of `insert` and `poll`
Selection Sort

- **Selection-sort:**
 - select the min/max and swap with 0
- priority queue is implemented with an unsorted sequence
- $O(n^2)$
Example

<table>
<thead>
<tr>
<th>Input:</th>
<th>Sequence S</th>
<th>Priority Queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(4,8,2,5,3,9)</td>
<td>(7)</td>
</tr>
<tr>
<td>(b)</td>
<td>(8,2,5,3,9)</td>
<td>(7,4)</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>(g)</td>
<td>()</td>
<td>(7,4,8,2,5,3,9)</td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(2)</td>
<td>(7,4,8,5,3,9)</td>
</tr>
<tr>
<td>(b)</td>
<td>(2,3)</td>
<td>(7,4,8,5,9)</td>
</tr>
<tr>
<td>(c)</td>
<td>(2,3,4)</td>
<td>(7,8,5,9)</td>
</tr>
<tr>
<td>(d)</td>
<td>(2,3,4,5)</td>
<td>(7,8,9)</td>
</tr>
<tr>
<td>(e)</td>
<td>(2,3,4,5,7)</td>
<td>(8,9)</td>
</tr>
<tr>
<td>(f)</td>
<td>(2,3,4,5,7,8)</td>
<td>(9)</td>
</tr>
<tr>
<td>(g)</td>
<td>(2,3,4,5,7,8,9)</td>
<td>()</td>
</tr>
</tbody>
</table>
Insertion Sort

- Insertion-sort:
 - Insert/swap the element into the correct sorted position
- Priority queue is implemented with a sorted sequence
- $O(n^2)$
Example

<table>
<thead>
<tr>
<th>Input:</th>
<th>Sequence S</th>
<th>Priority queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(4,8,2,5,3,9)</td>
<td>(7)</td>
</tr>
<tr>
<td>(b)</td>
<td>(8,2,5,3,9)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>(c)</td>
<td>(2,5,3,9)</td>
<td>(4,7,8)</td>
</tr>
<tr>
<td>(d)</td>
<td>(5,3,9)</td>
<td>(2,4,7,8)</td>
</tr>
<tr>
<td>(e)</td>
<td>(3,9)</td>
<td>(2,4,5,7,8)</td>
</tr>
<tr>
<td>(f)</td>
<td>(9)</td>
<td>(2,3,4,5,7,8)</td>
</tr>
<tr>
<td>(g)</td>
<td>()</td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(2)</td>
<td>(3,4,5,7,8,9)</td>
</tr>
<tr>
<td>(b)</td>
<td>(2,3)</td>
<td>(4,5,7,8,9)</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>(g)</td>
<td>(2,3,4,5,7,8,9)</td>
<td>()</td>
</tr>
</tbody>
</table>
Binary Heap

- A heap is a binary tree storing keys at its nodes and satisfying:
 - heap-order: for every internal node \(v \) other than root, \(\text{key}(v) \geq \text{key}(\text{parent}(v)) \)
 - complete binary tree: let \(h \) be the height of the heap
 - there are \(2^i \) nodes of depth \(i, 0 \leq i \leq h - 1 \)
 - at depth \(h \), the leaf nodes are in the leftmost positions
 - last node of a heap is the rightmost node of max depth
Height of a Heap

- A heap storing n keys has a height of $O(\log n)$
Insertion into a Heap

- Insert as new last node
- Need to restore heap order
Upheap

- Restore heap order
 - swap upwards
 - stop when finding a smaller parent
 - or reach root
- $O(\log n)$
Poll

- Removing the root of the heap
 - Replace root with last node
 - Remove last node w
 - Restore heap order
Downheap

• Restore heap order
 □ swap downwards
 □ swap with smaller child
 □ stop when finding larger children
 □ or reach a leaf

• $O(\log n)$
Heap Sort

- A PQ-sort implemented with a heap
- Space $O(n)$
- insert/poll (each) $O(\log n)$
- total time $O(n \log n)$
General Removal

- swap with last node
- delete last node
- may need to upheap or downheap

Heap:

```
5
 / 
9   11
 /   \
9    8  15
      /   \
      17    17
      /     / \
     21    19 11
```

```
1
 / 
6   9
 /   \
8    17
 /     \
21     19
```

```
22
 / 
33  27
```

Delete this node

Delete this node