CS206

Analysis of Algorithms
Running Time

• How long a program runs depends on
 ▫ efficiency of the algorithm/implementation
 ▫ size of input

• The running time typically grows with input size

• Worst case analysis
 ▫ how long will it take in the worst case?
Experimental Study

- Write a program implementing the algorithm
- Run it with different input sizes and compositions
- Record times and plot results
public class Timer {
 private static final int REPS = 5;
 private static final int NANOS_SEC = 1000000000;
 static int[] doSomething() {
 int[] karr = new int[10000];
 for (int i=1; i<100; i++)
 for (int j=1; j<1000; j++)
 for (int k=1; k<10000; k++) {
 karr[k] = i*j*k;
 }
 return karr;
 }
 public static void main(String[] args) {
 long data[] = new long[REPS];
 for (int i=0; i<REPS; i++) {
 long start = System.nanoTime();
 doSomething();
 long finish = System.nanoTime();
 data[i] = (finish-start);
 System.out.println("Run Time %2d: %12d ns", i, (finish-start));
 }
 long tt = 0;
 for (int i=0; i<REPS; i++)
 tt += data[i];
 System.out.println("Average Time: %6.4f", ((double)(tt/REPS))/NANOS_SEC);
 }
}
Limitation of Experiments

- You have to implement the algorithm
- You have to generate inputs that represent all cases
- Comparing two algorithms requires exact same hardware and software environments
 - Even then timing is hard
 - multiprocessing
 - file i/o
Theoretical Analysis

- Uses high-level description of algorithm
 - pseudo-code
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Primitive Operations

- Basic computations
- Not looped
- Assumed to take constant time
 - exact constant is not important
Example
Time required to compute an average

```java
public static double calcAverage(long[] data) {
    double res = 0;
    for (int i=0; i<data.length; i++) {
        res += data[i];
    }
    return res/data.length;
}

public static double calcAverage2(long[] data) {
    double res = 0;
    long pd = 0;
    for (long datum : data) {
        if (pd<datum) {
            res += datum;
        }
        pd=datum;
    }
    return res/data.length;
}
```

How many operations?
Estimate Running Time

- `calcAverage2` executes a total of $6N+1$ primitive operations in the worst case, $4N+1$ in the best case.

- Let $a =$ fastest primitive operation time, $b =$ slowest primitive operation time

- Let $T(n)$ denote the worst-case time of `average2`: $a(4n + 1) \leq T(n) \leq b(6n + 1)$

- $T(n)$ is bounded by two linear functions – linear in terms of n
Growth Rate of Running Time

• Changing the hardware/ software environment
 □ Affects $T(n)$ by a constant factor, but
 □ Does not alter the growth rate of $T(n)$

• The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm average2 \textit{(and average)}
Comparison of Two Algorithms

- insertion sort: $n^2/4$
- merge sort: $2n \log n$
- $n = 1000000$
 - insertion sort: 70 hours 40 minutes
 - merge sort: 40 seconds 0.5 seconds
Asymptotic Notation

- Provides a way to simplify analysis
- Allows us to ignore less important elements
 - constant factors
- Focus on the largest growth of n
- Focus on the dominant term
How do these functions grow?

- $f_1(x) = 43n^2 \log^4 n + 12n^3 \log n + 52n \log n$
- $f_2(x) = 15n^2 + 7n \log^3 n$
- $f_3(x) = 3n + 4 \log_5 n + 91n^2$
- $f_4(x) = 13 \cdot 3^{2n+9} + 4n^9$
Big O

$\exists \ n_0 \geq 0, \ c > 0, \ \text{if} \ f(n) \leq c \cdot g(n) \ \forall n \geq n_0$, then $f(n) = O(g(n))$

- Constant factors are ignored
- Upper bound
Big O and Growth Rate

- Big-O notation gives an upper bound on the growth rate
- $f(n) = O(g(n))$ means that the growth of $f(n)$ is no more than $g(n)$
- $f(n)$ can be a complicated polynomial
- $g(n)$ is one of a few highly-recognizable simple polynomials
Examples

• $7n + 2$
• $3n^3 + 20n^2 + 5$
• $3\log n + 5$
Summations

- **Constant series**
 \[
 \sum_{i=a}^{b} 1 = \max(b - a + 1, 0)
 \]

- **Arithmetic series**
 \[
 \sum_{i=1}^{n} i = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2} \in \Theta(n^2)
 \]

- **Quadratic series**
 \[
 \sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{2n^3 + 3n^2 + n}{6} \in \Theta(n^3)
 \]
Linear Time Algorithms: $O(n)$

- The algorithm’s running time is at most a constant factor times the input size
- Process the input in a single pass spending constant time on each item
 - max, min, sum, average, linear search
- Any single loop
\(O(n \log n) \) time

Frequent running time in cases when algorithms involve:

- Sorting
 - only the “good” algorithms
 - e.g. quicksort, merge sort, ...
- Divide and conquer
 - binary search
Quadratic Time: $O(n^2)$

- Nested loops, double loops
 - Your assignment 2: find a zipcode match in an `ArrayList` of n elements, n times
- Processing all pairs of elements
- Other sorting algorithms
 - insertion sort
Slow Times

- All subsets of \(n \) elements of size \(k \): \(O(n^k) \)

- All subsets of \(n \) elements (power set): \(O(2^n) \)

- All permutations of \(n \) elements: \(O(n!) \)
The diagram illustrates the relationship between time and data input (space) for various time complexities:

- $O(1)$: Constant time complexity.
- $O(\log n)$: Logarithmic time complexity.
- $O(n)$: Linear time complexity.
- $O(n^2)$: Quadratic time complexity.
- $O(n^3)$: Cubic time complexity.
- $O(n^n)$: Exponential time complexity.

As the data input increases, the time taken by algorithms with these complexities increases at different rates, with $O(n^n)$ being the most time-consuming and $O(1)$ being the least.