
Heaps and Polling Data

CS 206 - Introduction to Data Structures

Assignment 7 - due Friday 3/31

For this assignment, you’ll continue your previous investigation of Democratic
primary polling data by determining which candidate is currently in the lead.

1 Implementing a Heap

You should start by implementing the given PriorityQueue interface with a
heap so that generic objects that implement the compareTo function from the
Comparable interface can be inserted into your priority queue.

Requirements:

1. Start with implementing an array-based binary tree ArrayBinaryTree that
implements the given interface BinaryTree (same as A6). This is your first
experience writing two different implementations of the same data structure
(that conform to the same interface). Most of what you need to do below
should have been practiced in Lab8, so make sure your lab is working first.

(a) You are not required to use only recursive implementation techniques
this time around (because recursive is not the best choice for array-
based). You only need to implement a binary tree, not a binary search
tree.

(b) Remember that an arbitrary binary tree is not guaranteed to be com-
plete (for example, the user might execute remove on any element any
time) and you need to handle the case where positions may become
null through out your tree.

(c) The three traversal methods have the same specification as A6.

(d) Override toString the same way as in A6, i.e. returning a string of the
following format:

1



Tree:

Pre: b a c

In: a b c

Post: a c b

Where the first traversal is a pre-order traversal, the second is in-order,
and the last is post-order.

(e) Add a method toStringBreadthFirst which returns a string contain-
ing the elements of the tree traversed in breadth-first traversal or-
der. Note that this method is not in the interface because it is not
a common traversal order for all binary trees, but is useful for display-
ing/debugging array-based ones.

2. Now implement the PriorityQueue interface as a ArrayHeap which ex-
tends ArrayBinaryTree. Note that it is recommended to add protected or
private helper methods in both ArrayBinaryTree and ArrayHeap as you
design deems necessary. On the other hand, your implementation should be
properly encapsulated, i.e. no implementation details should be made visible
outside of the ArrayHeap or ArrayBinaryTree classes. In other words, any
method that leaks implementation details should not be public.

(a) Your implementation of insert should use the compareTo method of
the given element to determine which order to arrange the priority
queue. Insertion of elements that are already in the tree should update
the current element in the priority queue while making any updates
necessary to guarantee the heap property. When you put your polling
data into the tree this will be equivalent to updating the poll numbers
for a candidate. Since this heap will be used to store polling data, you
should be implementing this as a maximum heap, so that we will be
able to easily retrieve the current top candidate. Note that there is very
little actual difference between a max-heap and the min-heap you saw
in class. The only change should occur with compareTo.

(b) Your implementation of remove should ensure the heap property is
maintained. If the given element can not be found in the heap, this
method should do nothing and return false.

(c) Override toString to return a String representation of the heap in
breadth-first order, level by level. For example, for the min-heap you
constructed in Lab8 via inserting 9 down to 0 into the heap (refer to
Lab8 handout for a figure), its string represention should look like this:

0

2



1 4

3 2 8 5

9 6 7

Of course, if you inserted 9 down to 0 into a max-heap instead, its sring
representation should look like this:

9

8 7

6 5 4 3

2 1 0

2 Getting the Top Candidates

While a heap is usually required only to return the maximum (or minimum) ele-
ment, since this heap will be used to store polling data, it may be interesting to
us to retrieve the top few candidates.

Requirements:

1. Add a method ArrayList<E> peekTopN(int n) that returns the top ele-
ments of the heap in order. The heap should not be any different after the
method was called than it was before the method was called, i.e., this is
similar to peek in that it does not remove the top element. You should not
implement this method by removing and then reinserting each element, as
this has the potential to modify the heap.

2. Describe your design of the peekTopN method in your README file and
give a big-O analysis.

3 Command Line Input

As in the previous assignment, you will take filenames that store polling data as
arguments to your main method. Your resulting heap should contain the polling
data for each candidate from the most recent date for which there is data from the
files given on the command line. The resulting heap should be ordered so that the
candidate with the highest percentage of voters in the most recent poll is at the
top of the heap.

Additionally, you will add an option for the users to provide a flag that will
run your peekTopN method to determine and print out the top N candidates. The
resulting arguments you should handle will look like this:

3



-n 5 dempres_20190210_1.csv dempres_20190210_2.csv

In the above case, the top 5 candidates would be displayed.
Finally, you will add another optional argument to remove some candidates

from consideration. The full set of arguments you should handle will look like this:
-n 5 -r Biden Bloomberg dempres_20190210_1.csv dempres_20190210_2.csv

In the above case you would print out the top 5 candidates who are not Biden or
Bloomberg based on the polling data in the given files.

Requirements:

1. Take filename input from the command line into the main method of your
Main.java. You may be given multiple filenames. Also note that just like
in A3, you should expect that the input filenames may have additional (/-
separated) path in front of the filenames.

2. Process an optional flag to print out the top N candidates. These should be
printed out like this (where the example given is for N = 2):

Top 2 Candidates:

Joseph R. Biden Jr.:29.0

Kamala D. Harris:15.0

The above printout should happen once after all polling data has been in-
serted.

3. Process the optional −r flag to remove candidates. This should be done so
that the top N candidates do not include any removed candidates if they
are optionally printed out. However you should only perform these remove
operations once. One suggested order for handing these flags is to 1) insert
all the polling data (printing out the heap after each file is inserted), 2)
remove the candidates, and 3) show the top N candidates. In other words, it
is expected that when you print out the heap it will include the candidates
that will later be removed.

4. You many assume that the list of filenames is always last, i.e. the first non-
flag argument you encounter is assumed to be the beginning of the list of file
names. Make sure you error-check thoroughly, both the arguments to the
flags and the flags themselves. Your program should behave rationally no
matter how unreasonable the input or the value of flags.

Remember the order of flags should not matter, that is,
-n 5 -r Biden Bloomberg dempres_20190210_1.csv dempres_20190210_2.csv

and

4



-r Biden Bloomberg -n 5 dempres_20190210_1.csv dempres_20190210_2.csv

will generate the same output.

5. As in the previous assignment, you should print out the heap after each
polling file is inserted.

4 Testing

Output format for ArrayBinaryTree should be the same as A6 and you can ver-
ify via CheckFormat_A6.java. If you know for sure that your A6 output passed
CheckFormat_A6.java and you are not changing the toString of ArrayBinaryTree
(from the toString of LinkedBinaryTree) in a way that would affect the return
String format, then you can skip this completely.

We do not currently have a CheckFormat_A7.java for you to verify the ArrayHeap
output format or the output format for the top r candidates lookup via command
line flag -r. Please adhere to the sample output format as much as possible. Be
considerate of your TAs’ time!

Some additional test code that you can insert into your Main with expected
heap output:

Integer[] arr = {-2,3,9,-7,1,2,6,-3};

ArrayHeap<Integer> intHeap = new ArrayHeap<Integer>();

for (int i=0; i<arr.length(); i++)

intHeap.insert(arr[i]);

System.out.println(intHeap);

// output

//9

//1 6

//-3 -2 2 3

//-7

ArrayHeap<Character> letterHeap = new ArrayHeap<Character>();

letterHeap.insert(’A’);

letterHeap.insert(’C’);

letterHeap.insert(’G’);

letterHeap.insert(’B’);

letterHeap.insert(’D’);

letterHeap.insert(’J’);

letterHeap.insert(’F’);

letterHeap.insert(’E’);

letterHeap.insert(’H’);

5



letterHeap.insert(’I’);

System.out.println("size:" + letterHeap.size());

System.out.println(letterHeap);

// output

//size:10

//J

//I G

//E H C F

//A D B

5 Extra Credit

All extra credit should only be done after successful completion of all of the base
requirements for this assignment. The number of points awarded for extra credit
will be smaller than those for completion of the base requirements and the extra
credit is designed to be harder than those basic requirements as well. You may
choose which of the extra credit options below to pursue and can receive credit
for some and not others where that makes sense. In the case that you implement
ANY extra credit, you must list them in your README so that our grading will
know to test for them and grant credit accordingly.

1. Handle tied ranks appropriately for the peekTopN method. For example, in
the case where there are two candidates who are tied for the best, peekTopN
for n = 1 should print out both of those candidates.

2. Add an additional constructor to ArrayHeap which constructs the heap using
the bottom-up construction method we discussed in class.

6 Electronic Submissions

1. README: The usual plain text file README

Your name:

How to compile: Leave empty if it’s just javac Main.java

How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

6



Discussion: Design of peekTopN as explained above, and any extra credit
implementations you chose to do.

2. Source files: all .java files

3. Data files used: all .csv files

DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior
to submission.

To submit, store everything (README, source files and data files) in a direc-
tory called A7. Then follow the directions here:
https://cs.brynmawr.edu/systems/submit_assignments.html

7


	Implementing a Heap
	Getting the Top Candidates
	Command Line Input
	Testing
	Extra Credit
	Electronic Submissions

