
Binary Trees and Polling Data

CS 115 - Introduction to Data Structures

Assignment 6 - due Friday 3/24

For this assignment and the next one you will be working within the same
codebase to look at polling data for the 2020 U.S. presidential election. Before the
two main political parties put forward their nominees for president, the Democratic
and Republican parties hold primary elections to determine who their nominee will
be. While the Republican nominee was essentially predetermined to be President
Trump, who the voters of the the Democratic party would elect to receive the
party’s nomination was still very uncertain (at the time). In order to make repeated
predictions about the likely outcome of the Democratic party nomination, pollsters
(statisticians) regularly conduct polls (surveys) to sample Democratic primary
voters and ask who they plan to vote for. These results are compiled, released,
and eagerly tracked by the news media and public to determine which candidate
currently has the largest percentage of support.

In this assignment, your job will be to take the poll results given as input
via CSV files and update the entries of a binary tree so that it stores the name
and current polling percentage for each candidate. In the next assignment you will
modify this tree so that you can easily retrieve the name of the candidate currently
leading in the polls.

1 Implementing a Binary Tree

Start by implementing the given BinaryTree interface (~dxu/handouts/cs151/code/9-1)
as a LinkedBinaryTree so that generic objects that implement the compareTo

function from the Comparable interface can be inserted into your tree.

Requirements:

1. Implement the BinaryTree interface as a LinkedBinaryTree. Make sure
the implementation is entirely recursive and is a linked data structure, i.e.,
you should not use any for or while loops, arrays, ArrayLists, etc. Hint:

1



you may find it useful to use private helper methods that are called from the
publicly defined method in the interface.

2. Your implementation should be properly encapsulated, i.e. no implementa-
tion details should be made visible outside of the LinkedBinaryTree class -
it should only implement the BinaryTree interface. Hint: consider making
a private inner class to define a Node of the tree.

3. Insertion should be done using the compareTo method of the given element
so that smaller elements are put into the left subtree and larger element are
put into the right subtree. Insertion of elements that are already in the tree
should replace the current element. When you put your polling data into the
tree this will be equivalent to updating the poll numbers for a candidate.

4. As part of implementing the BinaryTree interface you will implement all
three orders for tree traversal, each returning a string in the form:
(element1,element2, ... , elementn)

where the order is determined by the correct order of the traversal. Note
that these methods should also use a recursive design.

5. Implement a boolean contains(E element) operation, which returns true
if the given element exists in the tree and false otherwise.

6. Implement a boolean remove(E element) operation, which returns true if
the given element exisits and is removed, and false otherwise. You should
be sure that this method works seamlessly with the other methods. For
example, in-order traversal should return a string containing the elements in
sorted order even after an element has been removed. Describe your chosen
design for this method in the README.

7. You should override the toString method to return a String that looks like
the following:

Tree:

Pre: b a c

In: a b c

Post: a c b

Where the first traversal is a pre-order traversal, the second is in-order, and
the last is post-order.

2



2 Storing Polling Data

The polling data you are given will include the candidate’s full name, their last
name, and the percentage of the people polled who said they would vote for that
candidate.

Requirements

1. Create a class to store the polling data.

2. Have your created class implement the Comparable interface so that polling
data objects are put in alphabetical order based on the candidate’s last name.

3. Override the toString method to return a String with the following for-
matting:
Full Name:5.0

where Full Name is the candidate’s full name and 5.0 was the candidate’s
polling percentage.

3 Polling Data from CSVs

The website FiveThirtyEight makes polling data for presidential primary candi-
dates available (https://data.fivethirtyeight.com/). We have preprocessed
this data for you so that only the relevant data is included and you will receive
one file per conducted poll.

Each polling data CSV has the following format:

answer,candidate_name,pct

Biden,Joseph R. Biden Jr.,25

Sanders,Bernard Sanders,16

The first column gives the last name of the candidate, the second column gives the
candidate’s full name, and the final column is the percent the candidate is polling
at in this poll. Note that the given percent can be a floating-point number.

Each file is named something like dempres_20190310_1.csv where dempres

indicates that these are polling results for the Democratic party presidential pri-
mary, 20190310 indicates that the polling results were completed on March 10,
2019, and _1 indicates that these are the results for the first poll completed on
that date (there may be multiple from different sources).

Your job is to take the polling data in each file and insert it into the binary
tree. Your resulting tree should contain the polling data for each candidate from
the most recent date for which there is data from the files given on the command

3

https://data.fivethirtyeight.com/


line. Each polling result will only include some of the candidates.

Requirements:

1. Take filename input from the command line into the main method of your
Main.java. You may be given multiple filenames. An example of given ar-
guments might be:
dempres_20190210_1.csv dempres_20190210_2.csv dempres_20190310_1.csv

or:
dempres_20190210*.csv

Recall that unix shell will expand the * for you.

2. You should process the given files in increasing date order. You may assume
that the files are given in this order.

3. Use your overridden toString method to print the tree after polling results
from each new date are inserted. Thus, your resulting printed information
should include one snapshot of the tree per given polling data CSV.

4 Testing

A test program CheckFormat_A6.java has been provided for you. Note that this
mostly makes sure that your output format is as expected for our autograder.
Although some correctness testing is included, it’s minimal. You are expected to
do your own testing. Also note that different from A4, CheckFormat_A6.java

does not replace Main.java, but instead will call your Main.main.
Some additional test code that you can insert into your Main with expected

output:

BinaryTree<Integer> intTree = new LinkedBinaryTree<Integer>();

intTree.insert(8);

intTree.insert(11);

intTree.insert(5);

intTree.insert(17);

intTree.insert(1);

intTree.insert(9);

intTree.insert(3);

System.out.println(intTree);

// output

//Tree:

//Pre: 8 5 1 3 11 9 17

4



//In: 1 3 5 8 9 11 17

//Post: 3 1 5 9 17 11 8

BinaryTree<Character> letterTree = new LinkedBinaryTree<Character>();

letterTree.insert(’A’);

letterTree.insert(’C’);

letterTree.insert(’G’);

letterTree.insert(’B’);

letterTree.insert(’D’);

letterTree.insert(’G’); // inserting again, should replace

letterTree.insert(’F’);

letterTree.insert(’E’);

letterTree.insert(’H’);

letterTree.insert(’I’);

System.out.println("size:" + letterTree.size());

System.out.println(letterTree);

// output

//size:9

//Tree:

//Pre: A C B G D F E H I

//In: A B C D E F G H I

//Post: B E F D I H G C A

5 Extra Credit

All extra credit should only be done after successful completion of all of the base
requirements for this assignment. The number of points awarded for extra credit
will be smaller than those for completion of the base requirements and the extra
credit is designed to be harder than those basic requirements as well. You may
choose which of the extra credit options below to pursue and can receive credit
for some and not others where that makes sense. In the case that you implement
ANY extra credit, you must list them in your README so that our grading will
know to test for them and grant credit accordingly.

1. In cases where you are given multiple polling results on the same date, aver-
age the per-candidate results before inserting the data into the tree, i.e., if
Biden received 25% in one poll and 31% in another poll from the same date,
the inserted polling result should show Biden receiving 28% of the vote.

2. Make sure that the polls are processed in date order no matter what order
they are given to you in on the command line.

5



6 Electronic Submissions

1. README: The usual plain text file README

Your name:

How to compile: Leave empty if it’s just javac Main.java

How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

Discussion: Design of remove as explained above, and any extra credit
implementations you chose to do.

2. Source files: all .java files

3. Data files used: all .csv files

DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior
to submission.

To submit, store everything (README, source files and data files) in a direc-
tory called A6. Then follow the directions here:
https://cs.brynmawr.edu/systems/submit_assignments.html

6


	Implementing a Binary Tree
	Storing Polling Data
	Polling Data from CSVs
	Extra Credit
	Electronic Submissions

