
More method writing

Methods

 & Recursion

Oct 30

Chalkboard

• Program to get a single integer, N, from user (or command line)

• Method to calculate and return the first N Lucas numbers

•

• method signature should be  
public static int[] lucasNumbers(int count)

• the int[] returned should have length equal to count.

• In main, print L[n]/L[n-1] (as a double) for n=1 .. n=(N-1).

Lucas numbers and the Golden mean

Overloading

• Can write several method with the same name

• must have

• same return type

• same modifiers

• different parameters

• Java considers methods different if they have
different signatures

• WHY would I ever want to do this???

• Squaring

why write only one!

In summary

• Primitive datatypes are passed by value (copy)

• Arrays are passed by reference (alias)

• So contents changes survive

• if you do not change the pointer

Recursion

• Idea, write a method that calls itself! (what could possibly go wrong)

• Important, it should call itself with a slightly simpler problem

• Factorial

• 6! = 6 * 5 * 4 * 3 * 2 * 1

• 6! = 6 * (5 * 4 * 3 * 2 * 1)

• the parenthesized stuff is 5!

• so 6! = 6 * 5!

Recursive addition
What is 5+4

Problem: "I only how how to add and subtract 1”

so: 5+4

5+(4-1) + 1

5+((3-1)+1) +1

5+((2-1+1) +1 + 1

5+1+1+1+1

6+1+1+1

7+1+1

8+1

9

Stopping Recursion
The "base case"

 public void loop2(int c) {

 int i;

 for (i=c; i >= 0; i--) {

 System.out.println(c);

 }

 }

 public void badRecurse(int c) {

	 System.out.println("B" + c);

	 badRecurse(c-1);

 }

 public void okRecurse(int c){

 	System.out.println(“OK" + c);

	 if (c==0) return;

	 okRecurse(c-1);

 }

 public void goodRecurse(int c) {

 	System.out.println("G" + c);

	 if (c>=0) {	

 goodRecurse(c-1);

 }

 }

Recursion Overview

•Base case(s):

▫no recursive calls are performed

▫every chain of recursive calls must reach a base case

•Recursive calls:

▫Calls to the same method in a way that progress is made
towards a base case

Recursive addition
What is 5+4

Problem: I only how how to add and subtract 1”

so: 5+4

5+(4-1) + 1

5+((3-1)+1) +1

5+((2-1+1) +1 + 1

5+1+1+1+1

6+1+1+1

7+1+1

8+1

9

Write code

Chalkboards
/** Print the given char the number of times given by num consecutively on

 * the same line. After the last, print a newline.

 * @param ch the char to print

 * @param num the number of times to print the char

 */

 public void rowOfChars(char ch, int num)

 /** Compute the nth power of a the given number.

 * DO NOT USE Math.pow

 */

 public int nthPower(int num, int Power)

 // Usage (e.g. in a main method)

 rowOfChars('d', 17);

 rowOfChars('X', 15);

 System.out.println(nthPower(2,10));

 System.out.println(nthPower(3,5));

 System.out.println(nthPower(7,4));

Recursion choices

• Often with recursion you have a choice of when to act

• on the way down

• on the way back up

• Consider again factorial:

• We can implement in either way!

• See factorial implementation on the class website

• Problem -- on the way down usually requires more parameters to the
function

⎩
⎨
⎧

−⋅

=
=

elsenfn
n

nf
)1(

0 if1
)(

before or after

Recursive helpers

• Consider a recursive function to print all of the items in an array 
public static void printArray(int[] arra);

• Problem, how do you do it?

• You need another parameter to hold the index in the array

• Recursive helpers!

• not really intended for anyone else to use

• actually do the recursion, unlike the intended entry point

• What would a helper look like for printArray?

Printing Digits

• Task: Print each of the digits of a number -- on its own line

• Do this using recursion

• (Yes you can do it with a while loop) -- so start there

• Integers

• The numbers come out in the reverse order

• Reverse sucks How can I fix that!!

• What about floating point numbers

• use recursion for that also -- HOW???

Recursively

