
passing/returning array, multiple returns

Methods, part 2
Oct 25

Factorial

• Write a program that takes one positive integer input

• The program has a method named factorial that takes one integer parameter and
returns an integer.

• the integer returned is the factorial 4! = 4*3*2*1

• The main method calls the factorial method and prints the result.

• Then change so that instead of factorial of the input, draw a random integer in 1..n,
N times and print the factorial.

Methods and Scope

• Like "if " and "for" loops,
methods have scope

• But, unlike those, a method is
NOT within the scope of the
caller

public class Scoper {

 public static void main(String[] args) {

 int anIntA = 5;

 int anIntB = 42;

 System.out.println(anIntA + " " + anIntB);

 changeIt();

 System.out.println(anIntA + " " + anIntB);

 }

 public static void changeIt() {

 int anIntA = 200;

 System.out.println(anIntA + " " + anIntB);

 }

}

Methods and Parameters

• Usually, you can change
parameters, but those changes
do not survive the end of the
method

public class ParamCh {

 public static void main(String[] args) {

 int anIntA = 5;

 int anIntB = 42;

 System.out.println(anIntA + " " + anIntB);

 changeIt(anIntB);

 System.out.println(anIntA + " " + anIntB);

 }

 public static void changeIt(int incomming) {

 System.out.println(anIntA + " " + incomming);

 int anIntA = 200;

 incomming = 45000;

 System.out.println(anIntA + " " + incomming);

 }

}

Averaging User Input

• Program:

• get from user N, the number of integers to average

• get N integers from user

• compute average

• Methods:

• get N integers

• average of N integers

Arrays, Methods and Pointers

• When you make an array "x = new int[6]" what is
stored in x is a pointer to the place where info is
stored, not the place.

• When x is passed to a function, you pass the
pointer.

• Any changes to the array live on after the method

• But, if you change the array pointer ...

• Choices:

• initialize array in main and pass in empty

• create and return array in method

public class AMP {

 public static void main(String[] args) {

 int[] array = new int[1];

 array[0] = 50;

 int notArray = 5;

 System.out.println(array[0] + " " + notArray);

 methd(array, notArray);

 System.out.println(array[0] + " " + notArray);

 }

 public static void methd(int[] marr, int mnarr) {

 System.out.println(marr[0] + " " + mnarr);

 marr[0] = 7000;

 mnarr = 700;

 System.out.println(marr[0] + " " + mnarr);

 }

}

Chalkboard

• Program to get a single integer, N, from user (or command line)

• Method to calculate and return the first N Lucas numbers

•

• In main, print L[n]/L[n-1] (as a double) for n=1 .. n=(N-1).

Lucas numbers and the Golden mean

Overloading

• Can write several method with the same name

• must have

• same return type

• same modifiers

• different parameters

• Java considers methods different if they have different signatures

• WHY would I ever want to do this???

• Squaring

why write only one!

In summary

• Primitive datatypes are passed by value (copy)

• Arrays are passed by reference (alias)

• So contents changes survive

• if you do not change the pointer

