
CS 113 – Computer
Science I

Lecture 26 – Review
Adam Poliak
04/27/2023

Announcements

HW09:
•Due 04/28 – released today (shorter)
• Extra credit

Adam: Office Hours
• Thursday (today): 3-4:45
• Friday: 12-2pm
• Next week, TBA

Announcements

Final
• Wednesday 05/03 9:30am-12:30pm in Park 300
• Closed-notes and books
• Practice exam will be released this week
• Cumulative
• A bit longer than midterms (but not 2x)

Todays class:
• Review
• AMA

Course evaluations
What do you see as the major strengths of
Adam Poliak in this course? What areas do you
see for improvement in instruction and/or in
content?

How prepared were you to take this course?
What courses, if any, would you have found
useful to take before this course? Is this course
listed at the appropriate level?

How did Adam Poliak effectively create an
accessible and inclusive course experience?
What areas do you see for commendation
and/or improvement in the instructor's attention
to accessibility and inclusivity?

Would you recommend this course, as taught
by Adam Poliak, to other students? Why or why
not?

Topics
Terminal commands, vim, directory structure
variables (int, double, char, bool, string, array), expressions
Methods
Conditionals
Recursion
Loops
Strings
Arrays
Frame diagrams
Object Oriented Programming
Searching
Sorting
Runtime Analysis

Variables & Expressions

Variables as containers. Variables have:
• A name
• Location
• Data
Expressions
• A combination of variables, operators, and values that represents a

single value. Expressions also have types, as determined by their
operators and operands.
• Operands vs Operators

Methods

Methods have:
• Signature

• Name
• Parameters
• Return Type

• Body

Parameters vs arguments

Keep track of methods (and order of methods) on the Method Stack in Frame Diagrams

Static vs instance vs abstract

Conditionals

• Conditional Statements allow our code to react based on conditions

• Check conditions using Boolean expressions

• If/else if/else

Recursion

Recursion as breaking down problems into simple problems and
punting the rest of the problem down to someone else

Base case

Recursive step

Loops

• Idea: block of code that executes repetitively

• Differences between while and for loops

Arrays and Strings

Arrays as single variable to contain a list of similar items

Accessing items from and inserting items into an array

Resizing an array

Strings as array of characters
String methods

Frame Diagrams

• Keep track of code execution

• Function Stack

• Object Stack
• If two variables point to the same object and we change the object, the

change occurs in both variables

Object Oriented Programming

Classes vs objects
Designing classes
Mutable vs immutable objects
Instance vs static vs abstract methods
Relationship between classes

Inheritance
Interfaces

Classes vs Objects

Class:
• custom data types that contains

- the data (instance variables)
- the operations (instance methods)

Object:
• an instance of the class

Example:
• String vs “hello world”

Designing classes

All classes should have:
• Constructor:
• Difference between value and empty constructor

• Getters/accessors
• Comparators (equal() or compareTo()) – zoom poll
• toString()
• Setters
• We’ll see an example later where we wont want to have setters

Access modifiers

Instance variables and methods can be
private

Can’t be accessed directly by anyone else
protected

Only subclasses can access these
public

Anyone that has access to the object can access these

Mutable vs immutable objects

Whether data stored inside an object can change (mutable) or cannot
change (immutable) once the object is created

Strings are immutable
Arrays are mutable

How would we design an immutable object
make instance variables private
do not include any setters

Static vs instance methods

Static
• Do not require an object

• no access to this keyword

• Examples:
• Integer.parseInt(“99”);
• Math.random();

Instance
• Acts on an object -> requires an

objects
• has access to this keyword

• Examples:
• “hello,world”.split(“,”)

Abstract methods

Contains method signatures: name, arguments, and return type

Does not include an implementation

Specify what a method does, not how it does it

Often used in interfaces

Each subclass that implements the interface can choose how to implement
the method

Class relationships - inheritance

A subclass is a class that extends an existing class; that is, it has the
attributes and methods of the existing class, plus more.
• Refer to the existing class as a parent or superclass
• When a class extends another class, it inherits the attributes and

methods from the parent class

All classes by default extend java.lang.Object.
• Consequence: Compiler knows to call “toString()”

Designing classes

Time class:
• Hour, minute, second

Date class:
• Day, month, and year
• Contains everything in Time as well

Whats the superclass and whats the subclass?
How could we make these immutable?
How could we define the distance between two Time or two Date objects?

Linear Search

Check each item in a collection one by one

Why is this call linear search?
Time it takes to search increases linearly with the size of the list

If we have 100 items in a list, how many items do we have to check in
the worstcase scenario?

All 100

Linear Search

What happens (in terms of speed) when the list is very large?
The search becomes slower

In what cases do we do the most work (i.e. perform the most
comparisons)?

When the item is not in the list

In what cases do we do the least amount of work?
When the item is the first element in the list

Binary Search

If the list is sorted in ascending order, we don’t need to consider every
element.

Which element should we check?
The middle

If the middle element isnt what we are looking for, what should we do?
Chop the search space in half (this is why its called binary search)

Binary Search run time

As the size of our collection increases, the number of guesses/comparisons increases, but
not linearly

The time increases by log 𝑛 we use base 2 . Why?
Because we cut our search space in half each time

If our collection contains 8 data points, how many comparisons in worst case do we make:
log! 8 = 3

If our collection contains 512 data points, how many comparisons in worst case do we
make:

log! 512 = 9

O(log(n))

Sorting

• BubbleSort & SelectionSort

• Runtime - 𝑂(𝑛!)

Runtime Analysis

Difference between Runtime Analysis and timing performance

Big-Oh: as the size of the data increases, how does the amount of steps
an algorithm perform also increase

𝑂(𝑙𝑜𝑔(𝑛)), 𝑂 𝑛 , 𝑂 𝑛𝑙𝑜𝑔 𝑛 , 𝑂 𝑛! , 𝑂(𝑛")

Course staff

• Teaching Assistants:
• Maha Attique (BMC ‘25)
• Amina Ahmed (BMC ‘25)
• Renata Del Vecchio (BMC ‘25)
• Jadyn Elliot (HC’ 25)
• Grace Choe (BMC ‘25) – developing autograders

• TLI student consultant
• Abhi Suresh (BMC ‘24)

Success in
your
learning/the
course

Thanks you & Congrats!

