CS 113 — Computer
Science |

b4/ & “‘“‘j“"" v SECE .

EPIEVUNERT Lecture 25— Runtime |l
A -

Adam Poliak

04/25/2023

Announcements

HWO09:
* Due 04/28 — released today (shorter)

* Building 2 Fancy classes that keeps track of Strings
* SuperDuperArray
e SuperDuperSortedArray

* fully autograded

Adam: Office Hours
* Thursday: 3-4:45
* Friday: 12-2pm
* Next week, TBA

Announcements

Final

* Wednesday 05/03 9:30am-12:30pm in Park 300
* Closed-notes and books

* Practice exam will be released this week
 Cumulative

e A bit longer than midterms (but not 2x)

Thursdays class:
* Review
« AMA

. CHATBOT o
ChatBOt lmprOV IMPROV

WEDNESDAY April 26
5:30-6:30 PM
BMC Campus Center Lounge

Wednesday 04/26
5:30-6:30pm
Campus Center Lounge

Improv is a form of live play or performance made up in the moment.... It involves (wmostly)
saying “yes, and...” to other players and then building or moving on from there with whatever
they toss out

BUT...

What if the other person is a CHATBOT!!

Come play and experiment with us...work with BMC Computer Science students and
Philly-based improv performers using the chatbot, SPOLIN, to generate prompts and
dialog for improv situations...

NO EXPERIENCE NECESSARY.. . The workshop leaders explain the software and will lead
some warm-up exercises to get everyone started... Volunteers can step up to play!

More Information

qangs
T

:#" i |
Supported by a Brynm Mawr Digital Media Grant, the Computer Seience "i',_:r: T
Program, and the Arts Program E ekt

Title Unique ID Instructor Enroliments Responded Response

Rate
Computer Science | - bmc.CMSC.B11 Adam Poliak 32 2 6.25%
: bmc.CMSC.B113.001.5P23 3.001.SP23
What do you see as the major strengths of
Adam Poliak in this course? What areas do you Computer Science | - bmc.CMSC.B11 Adam Poliak 32 4 12.5%
see for improvement in instruction and/or in bmc.CMSC.B113.00A.SP23 3.00A.SP23
content?
_ Computer Science | - bmc.CMSC.B11 Adam Poliak 32 6 18.75%
How prepared were you to take this course? bmc.CMSC.B113.001.5P23 3.001.SP23
What courses, if any, would you have found . .
useful to take before this course? Is this course Computer Science | - bmc.CMSC.B11 Adam Poliak 32 8 25%
: : bmc.CMSC.B113.00A.SP23 3.00A.SP23
listed at the appropriate level?
Computer Science | - bmc.CMSC.B1 Adam Poliak 32 11 34.38%
How did Adam Poliak effectively create an bmc.CMSC.B113.001.5P23 13.001.5P23
) : : . "
accessible and IhClUSIVGfCOUI‘SG experlgnce. Computer Science | - bmc.CMSC.B1T Adam Poliak 32 13 40.63%
What areas do you see for commendation bmc.CMSC.B113.00A.SP23 13.00A.SP23

and/or improvement in the instructor's attention
to accessibility and inclusivity?

Would you recommend this course, as taught \Ne d Id n Ot d O u b | e pa rtICI patlo n

by Adam Poliak, to other students? Why or why

o7 - but we got close-ish

Measuring performance

How do we quantify performance?

Computing the speed of your programs

Compute the time needed to execute a function

import java.lang.System.*;

public static void main(String[] args) {

double start = System.currentTimeMillis()/1000.0; // converts to seconds

bubbleSort(L);
double end = System.currentTimeMillis()/1000.0;

System.out.printf("Time: %.10f", (end-start));

Runtime analysis: Big-O notation

Quantifies worse-case performance
theoretical measure of how performance changes with input size

Advantages
Hardware-independent measure

Allows us to analyze different approaches without implementing the algorithm
first

Big-O counting

 defining, assigning variables (1 step)

e printing, reading input (built-in function calls: “k” steps)
* mul, divide, sub, add, mod, etc (1 step)

e testing conditions (1 step)

Big-O Example — Compute a sum

Int sum = 0;

Inti=0;

while (i < n) {
sum =sum + I;
I++;

}

System.out.printin(sum);

Runtime practice

a)

int n = getinputSize();

for (inti=0;i<n;i++){
System.out.printin(i);

}

Runtime practice

b)

int n = getinputSize();

for (inti=0;i<100; i++) {
System.out.println(i*n);

}

Runtime practice

)

int n = getlnputSize();

for (inti=0;i<n;i++){
System.out.printin(i);

}

for(intj=0;j<n;j++){
System.out. printin(j);
}

Runtime practice

d)
int n = getlnputSize();
for (inti=0;i<n;i++) {
for(intj=0;j<n;j++) {
System.out.printin(i, j);
}
}

Runtime practice

e)
int n = getlnputSize();
for (inti=0;i<n;i++) {
for(intj=i;j<n;j++){
System.out.printin(i, j);
}
}

Runtime practice

h)

int[] Ist ={1,2,3,5,7,12,19,34,55,67,99,101};
int n = Ist.length;

int mid = floor(n/2);
System.out.printin(Ist[mid]);

Runtime practice

i)
int n = getlnputSize();
for (inti=0;i<n;i++){
k =n;
while (k > 1) {
System.out.printIn(i, k);
k =k/2;
}
}

Runtime practice

f)
int n = getlnputSize();
for (inti=0;i<n;i++){
for (intj=0;j<10; j++) {
printin(i, j);
}
}

Runtime practice

g)
int n = getlnputSize();

while (n > 1) {
println(n);
n=n/2;

}

Linear Search - revisited

public static int LinearSearch(int x, int[] L) {
int index = -1;
for (int i = 0; i < L.length; i++) {
if (L[i] == x) {
index = 1;
}

}

return index;

Binary Search —what is the runtime?

public static int search(int x, int[] L) {
int low = 0;
int high = L.length-1;
while (low <= high) {
int mid = (low + high)/2;
if (x> L[mid]) {
low = mid+1;
}
else if (x < L[mid]) {
high = mid-1;
}
else {
return mid;

}
}

return -1;

BubbleSort Revisited — What is the runtime?

public static void bubbleSort(int[] L) {

for (int n = 0; n < L.length; n++) {
for (intj = 1; j < Llength-n; j++) {
if (L[j-1] > L[j]) {
swap(j-1, j, L);
}
}
}
}

Comparisons in BubbleSort

How many comparisons do we need to make to sort a list of size n?

nn-—1)
2

Why? (draw on the board)

n(n—-1)
2

—Nn
2
So what’s the Big-Oh?

0(n?)

BubbleSort Revisited — What is the runtime?

public static void bubbleSort(int[] L) {

for (int n = 0; n < L.length; n++) {
for (intj = 1; j < Llength-n; j++) {
if (L[j-1] > L[j]) {
swap(j-1, j, L);
}
}
}
}

SelectionSort Revisited — What is the runtime?

public static void selectionSort(int[] L) {

for (inti=0;i< Llength; i++) {
int minldx = i;
for (intj = i+1; j < L.length; j++) {
if (L[j] < L[minldx]) {

minldx = j;
}
}
swap(i, minldx, L);
}

}

Comparison of runtimes

fn(N)

25

20

15

10

== | jnear

== Quadratic

== | ogarithmic

Binary search

Time (s)

0.100

R

]

0.025 U l) 3 N w

0.000

List size N from 1 to 100

Linear Search

3
2

0

Q

£
1
0

List size N from 1 to 100

