
CS 113 – Computer
Science I

Lecture 24 – OOP &
Runtime
Adam Poliak
04/20/2023

Announcements

•HW08:
• Due 04/21
• Inheritance and interfaces – fully autograded

•HW09:
• Due 04/28 – releasing by sometime tomorrow
• Building fancyArray classes – fully autograded

Course evaluations
What do you see as the major strengths of
Adam Poliak in this course? What areas do you
see for improvement in instruction and/or in
content?

How prepared were you to take this course?
What courses, if any, would you have found
useful to take before this course? Is this course
listed at the appropriate level?

How did Adam Poliak effectively create an
accessible and inclusive course experience?
What areas do you see for commendation
and/or improvement in the instructor's attention
to accessibility and inclusivity?

Would you recommend this course, as taught
by Adam Poliak, to other students? Why or why
not?

Measuring performance

How do we quantify performance?

Computing the speed of your programs

Compute the time needed to execute a function

import java.lang.System.*;

public static void main(String[] args) {
…..

double start = System.currentTimeMillis()/1000.0; // converts to seconds
bubbleSort(L);
double end = System.currentTimeMillis()/1000.0;

System.out.printf("Time: %.10f", (end-start));
}

Runtime analysis

Idea: An algorithm with fewer steps is faster to compute

What is a step?
A single instruction (e.g. assignment, add, etc)

Runtime analysis estimates the number of steps of an algorithm

Runtime analysis helps answer questions such as

How does the performance scale as we increase the input size?
e.g. how long does it take to sort arrays of increasing size?

What is the best case performance? worse case? average case?

Runtime analysis: Big-O notation

Quantifies worse-case performance
theoretical measure of how performance changes with input size

Advantages
Hardware-independent measure

Allows us to analyze different approaches without implementing the algorithm
first

Comparisons in BubbleSort
How many comparisons do we need to make to sort a list of size 𝑛?

𝑛(𝑛 − 1)
2

Why? (draw on the board)

!(!#$)
&

=
!! # !

&
So what’s the Big-Oh?

𝑂 𝑛&

Big-O Example – Compute a sum

int sum = 0;
int i = 0;
while (i < n) {

sum = sum + i;
i++;

}
System.out.println(sum);

Big-O counting

• defining, assigning variables (1 step)

• printing, reading input (built-in function calls: “k” steps)

• mul, divide, sub, add, mod, etc (1 step)

• testing conditions (1 step)

Runtime practice
a)
int n = getInputSize();
for (int i = 0; i < n; i++) {

System.out.println(i);
}

Runtime practice
b)
int n = getInputSize();
for (int i = 0; i < 100; i++) {

System.out.println(i*n);
}

Runtime practice
c)
int n = getInputSize();
for (int i = 0; i < n; i++) {

System.out.println(i);
}

for (int j = 0; j < n; j++) {
System.out. println(j);

}

Runtime practice
d)
int n = getInputSize();
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
System.out.println(i, j);

}
}

Runtime practice
e)
int n = getInputSize();
for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {
System.out.println(i, j);

}
}

Runtime practice
h)
int[] lst = {1,2,3,5,7,12,19,34,55,67,99,101};
int n = lst.length;
int mid = floor(n/2);
System.out.println(lst[mid]);

Runtime practice
i)
int n = getInputSize();
for (int i = 0; i < n; i++) {

k = n;
while (k > 1) {

System.out.println(i, k);
k = k/2;

}
}

Runtime practice
f)
int n = getInputSize();
for (int i = 0; i < n; i++) {

for (int j = 0; j < 10; j++) {
println(i, j);

}
}

Runtime practice
g)
int n = getInputSize();
while (n > 1) {

println(n);
n = n/2;

}

Linear Search - revisited
public static int LinearSearch(int x, int[] L) {

int index = -1;
for (int i = 0; i < L.length; i++) {

if (L[i] == x) {
index = i;

}
}
return index;

}

Binary Search – what is the runtime?
public static int search(int x, int[] L) {

int low = 0;
int high = L.length-1;
while (low <= high) {

int mid = (low + high)/2;
if (x > L[mid]) {

low = mid+1;
}
else if (x < L[mid]) {

high = mid-1;
}
else {

return mid;
}

}
return -1;

}

BubbleSort Revisited – What is the runtime?

public static void bubbleSort(int[] L) {

for (int n = 0; n < L.length; n++) {
for (int j = 1; j < L.length-n; j++) {
if (L[j-1] > L[j]) {
swap(j-1, j, L);

}
}

}
}

SelectionSort Revisited – What is the runtime?
public static void selectionSort(int[] L) {

for (int i = 0; i < L.length; i++) {
int minIdx = i;
for (int j = i+1; j < L.length; j++) {
if (L[j] < L[minIdx]) {
minIdx = j;

}
}
swap(i, minIdx, L);
}

}

Linear Search

