
CS 113 – Computer
Science I

Lecture 23 – Sor4ng
Adam Poliak
04/18/2023

Announcements

•HW08:
• Due 04/21 - will be released by Friday
• Inheritance and interfaces – fully autograded

•HW09:
• Due 04/28
• Building a fancyArray class – fully autograded

Midterm

• Overall class did well:
• Median 79% (Midterm 1: 77%)
• Mean 71% (Midterm 1: 68%)

• When grading we’ll lower the maximum
• Instead of being out of 77, the denominator will be lower

• You can make a regrade request on Gradescope

Course evaluations
What do you see as the major strengths of
Adam Poliak in this course? What areas do you
see for improvement in instruction and/or in
content?

How prepared were you to take this course?
What courses, if any, would you have found
useful to take before this course? Is this course
listed at the appropriate level?

How did Adam Poliak effectively create an
accessible and inclusive course experience?
What areas do you see for commendation
and/or improvement in the instructor's attention
to accessibility and inclusivity?

Would you recommend this course, as taught
by Adam Poliak, to other students? Why or why
not?

Outline

• Announcements
• Sorting - two algorithms
• BubbleSort
• SelectionSort

Who do we care about sorting?

Makes searching faster!

Efficient sorting is important for optimizing
the efficiency of other algorithms (such
as search and merge algorithms) that require input data
to be in sorted lists. Sorting is also often useful
for canonicalizing data and for producing human-
readable output.

https://en.wikipedia.org/wiki/Sorting
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Merge_algorithm
https://en.wikipedia.org/wiki/Canonicalization

ChatGPT’s
response:

Covered in data
structures, next

semester!

Sor@ng

10 4 3 0 11 8

0 1 2 3 4 5

How might we sort the list of numbers below.
Can we come up with an algorithm?

Bubble Sort
Compare two adjacent items, and swap if needed

Repeat until largest item is at the back

Repeat process until done

Bubble Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
0

10 4 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
1

4 10 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 10 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 3 10 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 10 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
4

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and compare pairs with shorter list!

len = 5

What next?

j
1

4 3 0 10 8 11

Last element has
largest element!

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
1

3 4 0 10 8 11

Last element has
largest element!

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 4 0 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
3

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and check pairs with shorter list

len = 4

What next?

j
1

3 0 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
2

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
3

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 2

What next?

j
1

0 3 4 8 10 11

Bubble Sort
Idea: bubble highest values to the end of the list; Check a shorter sublist
each time

bubbleSort(L):

for len in range(len(L), 1, -1):

for j in range(1, len): # bubble

if L[j-1] > L[j]:

swap(j-1, j, L)

Bubble sort
swap(i, j, L):

temp = L[i] # step 1

L[i] = L[j] # step 2

L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j

Selection Sort

Selection sort
Repeatedly find the smallest item and put it at front of list

selecWonSort(L):

for startIdx in range(len(L)):

minIdx = findMinimum(startIdx, L)

swap(startIdx, minIdx, L)

Selection Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

Selection Sort
0 1 2 3 4 5

start
0

Find minimum element idx between start to end

10 4 3 0 11 8

What next?

minIdx
3

Selec@on Sort
0 1 2 3 4 5

start
0

Swap the elements at start and minIdx

0 4 3 10 11 8

What next?

minIdx
3

Selection Sort
0 1 2 3 4 5

start
1

Decrease the interval.

0 4 3 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
1

Find minimum element between start to end

0 4 3 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
1

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
2

Decrease the interval.

0 3 4 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
2

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
2

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
3

Decrease the interval.

0 3 4 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
3

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
5

Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 11 10

What next?

start
3

minIdx
5

Selection Sort
0 1 2 3 4 5

start
4

Decrease the interval.

0 3 4 8 11 10

What next?

Selection Sort
0 1 2 3 4 5

start
4

Find minimum element idx between start to end

0 3 4 8 11 10

What next?

minIdx
5

Selec@on Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 10 11

What next?

start
4

minIdx
5

Selection Sort
0 1 2 3 4 5

start
5

Decrease the interval.

0 3 4 8 10 11

We’re done!

Selection sort
findMinimum(startIdx, L):

minIdx = startIdx

for i in range(startIdx, len(L)):

if L[i] < L[minIdx]:

minIdx = i

return minIdx

Swap
swap(i, j, L):

temp = L[i] # step 1

L[i] = L[j] # step 2

L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j

Selection sort and Bubble sort are O(N2)

L sizes from 100 to 2000

Ti
m

e
in

 m
ill

ise
co

nd
s

