2%/
_ 343+ &.3164¥

2a

fow < 3 G CS 113 — Computer
Science |

Lecture 23 — Sorting

Adam Poliak
04/18/2023

Announcements

* HWOS:

* Due 04/21 - will be released by Friday
* Inheritance and interfaces — fully autograded

* HWOO:
* Due 04/28
* Building a fancyArray class — fully autograded

Midterm

* Overall class did well:
* Median 79% (Midterm 1: 77%)
* Mean 71% (Midterm 1: 68%)

* When grading we’ll lower the maximum
* Instead of being out of 77, the denominator will be lower

* You can make a regrade request on Gradescope

Course evaluations

What do you see as the major strengths of
Adam Poliak in this course? What areas do you
see for improvement in instruction and/or in

content?
Title Unique ID Instructor Enroliments Responded Response
. Rate
How prepared were you to take this course?
What courses, if any, would you have found
useful to take before this course? Is this course
listed at the appropriate level? _ _
Computer Science | - bmc.CMSC.B11 Adam Poliak 32 2 6.25%

_ _ _ bmc.CMSC.B113.001.5P23 3.001.SP23
How did Adam Poliak effectively create an

accessible and inclusive course experience? Computer Science | - bmc.CMSC.B11 Adam Poliak 32 4 12.5%
What areas do you see for commendation bmc.CMSC.B113.00A.SP23 3.00A.SP23

and/or improvement in the instructor's attention

to accessibility and inclusivity?

Would you recommend this course, as taught
by Adam Poliak, to other students? Why or why
not?

Outline

* Announcements

* Sorting - two algorithms
 BubbleSort
e SelectionSort

Who do we care about sorting?

Makes searching faster!

Efficient sorting is important for optimizing

the efficiency of other algorithms (such

as search and merge algorithms) that require input data
to be in sorted lists. Sorting is also often useful

for canonicalizing data and for producing human-

readable output.

https://en.wikipedia.org/wiki/Sorting
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Merge_algorithm
https://en.wikipedia.org/wiki/Canonicalization

ChatGPT's
response:

Covered in data
structures, next
semester!

Sorting is a fundamental operation in computer science because it is a common and
essential task in many applications. Sorting refers to arranging a collection of elements in a
particular order, such as numerical, alphabetical, chronological, or any other custom order.

Here are a few reasons why we care about sorting in computer science:

1. Searching: Sorted data is easier to search. Searching an unsorted list requires examining

every element in the list, which can be slow and inefficient for large data sets. In contrast,

searching a sorted list can be done using efficient algorithms like binary search that

require examining only a logarithmic number of elements.

2. Data analysis: Sorting can help in data analysis. Sorting data can help identify patterns
and relationships that may not be immediately apparent in an unsorted data set. For
example, sorting a list of sales data by date can reveal trends and seasonality.

3. Optimization: Sorting is often a pre-requisite for other algorithms, such as finding the
median or calculating the mode of a data set. Sorting can also be used as a building block
for other algorithms, such as merge sort or quick sort, which are used in many
computational applications.

4. Database management: Sorting is important in managing databases. Databases often
contain large amounts of data that need to be sorted in order to perform operations such

as searching, filtering, and data analysis.

In summary, sorting is an essential operation in computer science that helps in searching,
data analysis, optimization, and database management. It is a basic building block for many

algorithms and is crucial for efficient and effective computation.

Sorting

How might we sort the list of numbers below.
Can we come up with an algorithm?

0 1 2 3 4

10 4 3 0 11

Bubble Sort

Compare two adjacent items, and swap if needed

Repeat until largest item is at the back

Repeat process until done

Bubble Sort

0

1 2

10

4 3

11

What do we do first?

Bubble Sort len =6

0 1 2 3 4 5

10 4 3 0 11 8

I t
-1 J
0 0

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort len =6

0 1
Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort

0 1 2 3

4 10 3 0

11

len = 6

1 2

Compare j-1 and j; Swap if L[j-1] > L[j]

What next?

Bubble Sort

0 1 2 3

4 3 10 0

11

len = 6

1 2

Compare j-1 and j; Swap if L[j-1] > L[j]

What next?

Bubble Sort

0 1 2 3
4 3 10 0
I t

J-1 J

2 3

Compare j-1 and j; Swap if L[j-1] > L[j]

11

len = 6

What next?

Bubble Sort len =6
0 . 2 3 4 5
4 3 0 10 11 3
I 4
j-1 J
2 3

Compare j-1 and j; Swap if L[j-1] > L[j]

What next?

Bubble Sort len =6
0 . 2 3 4 5
4 3 0 10 11 3
I 4
j-1 J
3 4

Compare j-1 and j; Swap if L[j-1] > L[j]

What next?

Bubble Sort len =6

0 1 2 3 4 5
4 3 0 10 11 3
I
-1 J
4 5

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort len =6

0 1 2 3 4 5
4 3 0 10 3 11
I

-1 J
4 5

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort len =5

0 1 2 3 4 5
4 3 0 10 3 11
| ‘ ‘ Last element has
J-1) largest element!
0 1

Reset and compare pairs with shorter list!

What next?

Bubble Sort len =5

0 1 2 3 4 5

3 4 0 10 8 11

I

-1 J
0 1

Last element has
largest element!

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort len =5

0 1 2 3 4 5
| 3 4 0 10 3 11
I
-1 J
1 2

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort len =5

0 1 2 3 4 5
3 0 al 10 3 11
I
-1 J
1 2

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort

0

3

10

Compare j-1 and j; Swap if L[j-1] > L[j]

len =5

11

What next?

Bubble Sort len =5

0 1 2 3 4 5
3 0 4 10 3 11
I
-1 J
3 4

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort len =5

0 1 2 3 4 5
3 0 4 3 10 11
I t
J-1 J
3 4

Compare j-1 and j; Swap if L[j-1] > L[j]
What next?

Bubble Sort len =4

0 1 2 3 4 5
3 0 4 3 10 11
I t
J-1 .
0 1

Reset and check pairs with shorter list

What next?

Bubble Sort

0 1 2 3
0 3 4 8
I t
J-1 .
0 1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

10

11

What next?

Bubble Sort

0 1 2 3
0 3 4 8
I t
J-1 .

1 2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

10

11

What next?

Bubble Sort

0 1 2 3
0 3 4 8
I t

J-1 J

2 3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

10

11

What next?

Bubble Sort len =3
0 . 2 3 4 5
0 4 o 10 11

j-1
0

3
]

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

What next?

Bubble Sort

0

0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

1

3

|

j-1
0

2

A
|
J
1

len =3

10

11

What next?

Bubble Sort len =2
0 . 2 3 4 5
0 4 o 10 11

j-1
0

3
]

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

What next?

Bubble Sort

ldea: bubble highest values to the end of the list; Check a shorter sublist
each time

bubbleSort(L):
for len in range(len(L), 1, -1):
for jin range(1, len): # bubble
if L[j-1] > L[j]:

Swap(j-l, jl L)

Bubble sort

swap(i, j, L):

temp = L[i] #step 1

L[i] = L[j] # step 2

L[j] = temp # step 3

Selection Sort

Selection sort

Repeatedly find the smallest item and put it at front of list

selectionSort(L):
for startldx in range(len(L)):
minldx = findMinimum(startidx, L)

swap(startldx, minldx, L)

Selection Sort

0

1 2

10

4 3

11

What do we do first?

Selection Sort

0 1 3 4 5
10 4 0 11 3
| |
start minldx
0 3

Find minimum element idx between start to end

What next?

Selection Sort

0

1

0 4 10 11 3
| I

start minldx
0 3

Swap the elements at start and minldx

What next?

Selection Sort

0 1 3 4 5
0 4 10 11 8
start
1

Decrease the interval.

What next?

Selection Sort

0 . 2 3 4 5
0 4 3 10 11 3
I
start minldx
1 2

Find minimum element between start to end

What next?

Selection Sort

0

1

Swap the elements at start and minldx

0 3 4 10 11 3
T
start minldx
1 2

What next?

Selection Sort

0

1

0

3

10

11

Decrease the interval.

start

What next?

Selection Sort

0 1 3 4 5
0 3 4 10 11 3
I
start minldx
2 2

Find minimum element idx between start to end

What next?

Selection Sort

0

1

Swap the elements at start and minldx

0 3 4 10 11 3
I
start minldx
2 2

What next?

Selection Sort

0

1

0

3

10

11

Decrease the interval.

start

What next?

Selection Sort

0 1 3 4 5
0 3 10 11 3
| |
start minldx
3 5

Find minimum element idx between start to end

What next?

Selection Sort

0 1 2 3 4 5
0 3 4 3 11 10
| |
start minldx
3 5

Swap the elements at start and minldx

What next?

Selection Sort

0

1

0

3

11

10

Decrease the interval.

start

What next?

Selection Sort

0 1 4 5
0 3 11 10
I
start minldx
4 5

Find minimum element idx between start to end

What next?

Selection Sort

0

1

Swap the elements at start and minldx

0 3 10 11
I I
start minldx
4 5

What next?

Selection Sort

0 1 2 3 4 5
0 3 4 3 10 11
start

5

Decrease the interval.

We’re done!

Selection sort

findMinimum(startldx, L):
minldx = startldx
foriin range(startldx, len(L)):
if L[i] < L[minldx]:
minldx =i

return minldx

| 28 N
Swap @
Temp i
swap(i, j, L): -
temp = L[i] #step 1 @ Q
L[i] = L[J] # step 2 Temp i
L[j] = temp # step 3 -
Temp i
i

Temp

Selection sort and Bubble sort are O(N?)

Time in milliseconds

L sizes from 100 to 2000

