
CS 113 – Computer
Science I

Lecture 22 – Sorting,
Midterm Review
Adam Poliak
04/11/2023

Announcements

• Midsemester feedback

• Midterm 04/13
• In class
• Department admin will drop off midterm

• HW08:
• Due 04/20 - will be released by Friday
• Inheritance and interfaces – fully autograded

• HW09:
• Due 04/27
• Building a fancyArray class – fully autograded

Outline

• Review
• Sorting

Midterm topics

Frame diagrams
Conditionals
Recursion/Loops
Object Oriented Programming
Searching

Object Oriented Programming

Classes vs objects
Designing classes
Mutable vs immutable objects
Instance vs static vs abstract methods
Relationship between classes

Inheritance
Interfaces

Classes vs Objects

Class:
• custom data types that contains

- the data (instance variables)
- the operations (instance methods)

Object:
• an instance of the class

Example:
• String vs “hello world”

Designing classes

All classes should have:
• Constructor:
• Difference between value and empty constructor

• Getters/accessors
• Comparators (equal() or compareTo()) – zoom poll
• toString()
• Setters
• We’ll see an example later where we wont want to have setters

Access modifiers

Instance variables and methods can be
private

Can’t be accessed directly by anyone else
protected

Only subclasses can access these
public

Anyone that has access to the object can access these

Mutable vs immutable objects

Whether data stored inside an object can change (mutable) or cannot
change (immutable) once the object is created

Example: Zoom poll
Strings are immutable
Arrays are mutable

How would we design an immutable object
make instance variables private
do not include any setters

Static vs instance methods

Static
• Do not require an object

• no access to this keyword

• Examples:
• Integer.parseInt(“99”);
• Math.random();

Instance
• Acts on an object -> requires an

objects
• has access to this keyword

• Examples:
• “hello,world”.split(“,”)

Abstract methods

Contains method signatures: name, arguments, and return type

Does not include an implementation

Specify what a method does, not how it does it

Often used in interfaces

Each subclass that implements the interface can choose how to implement
the method

Class relationships - inheritance

A subclass is a class that extends an existing class; that is, it has the
attributes and methods of the existing class, plus more.
• Refer to the existing class as a parent or superclass
• When a class extends another class, it inherits the attributes and

methods from the parent class

All classes by default extend java.lang.Object.
• Consequence: Compiler knows to call “toString()”

Inheritance example

Inheritance example

Inheritance example

Designing classes

Time class:
• Hour, minute, second

Date class:
• Day, month, and year
• Contains everything in Time as well

Whats the superclass and whats the subclass?
How could we make these immutable?
How could we define the distance between two Time or two Date objects?

Linear Search

Check each item in a collection one by one

Why is this call linear search?
Time it takes to search increases linearly with the size of the list

If we have 100 items in a list, how many items do we have to check in
the worstcase scenario?

All 100

Linear Search

What happens (in terms of speed) when the list is very large?
The search becomes slower

In what cases do we do the most work (i.e. perform the most
comparisons)?

When the item is not in the list

In what cases do we do the least amount of work?
When the item is the first element in the list

Binary Search

If the list is sorted in ascending order, we don’t need to consider every
element.

Which element should we check?
The middle

If the middle element isnt what we are looking for, what should we do?
Chop the search space in half (this is why its called binary search)

Binary Search run time

As the size of our collection increases, the number of guesses/comparisons
increases, but not linearly

The time increases by log 𝑛 we use base 2 . Why?
Because we cut our search space in half each time

If our collection contains 8 data points, how many comparisons in worst case do we
make:

log! 8 = 3
If our collection contains 512 data points, how many comparisons in worst case do
we make:

log! 512 = 9

Review

What else?

Outline

• Review
• Sorting

Sorting

10 4 3 0 11 8

0 1 2 3 4 5

How might we sort the list of numbers below.
Can we come up with an algorithm?

Bubble Sort
Compare two adjacent items, and swap if needed

Repeat until largest item is at the back

Repeat process until done

Bubble Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
0

10 4 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
1

4 10 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 10 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 3 10 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 10 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
4

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and compare pairs with shorter list!

len = 5

What next?

j
1

4 3 0 10 8 11

Last element has
largest element!

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
1

3 4 0 10 8 11

Last element has
largest element!

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 4 0 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
3

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and check pairs with shorter list

len = 4

What next?

j
1

3 0 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
2

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
3

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 2

What next?

j
1

0 3 4 8 10 11

Bubble Sort
Idea: bubble highest values to the end of the list; Check a shorter sublist
each time

bubbleSort(L):

for len in range(len(L), 1, -1):

for j in range(1, len): # bubble

if L[j-1] > L[j]:

swap(j-1, j, L)

Bubble sort
swap(i, j, L):

temp = L[i] # step 1

L[i] = L[j] # step 2

L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j

Selection Sort
Not covering on Tuesday 04/04

Selection sort
Repeatedly find the smallest item and put it at front of list

selectionSort(L):

for startIdx in range(len(L)):

minIdx = findMinimum(startIdx, L)

swap(startIdx, minIdx, L)

Selection Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

Selection Sort
0 1 2 3 4 5

start
0

Find minimum element idx between start to end

10 4 3 0 11 8

What next?

minIdx
3

Selection Sort
0 1 2 3 4 5

start
0

Swap the elements at start and minIdx

0 4 3 10 11 8

What next?

minIdx
3

Selection Sort
0 1 2 3 4 5

start
1

Decrease the interval.

0 4 3 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
1

Find minimum element between start to end

0 4 3 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
1

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
2

Decrease the interval.

0 3 4 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
2

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
2

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
3

Decrease the interval.

0 3 4 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
3

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
5

Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 11 10

What next?

start
3

minIdx
5

Selection Sort
0 1 2 3 4 5

start
4

Decrease the interval.

0 3 4 8 11 10

What next?

Selection Sort
0 1 2 3 4 5

start
4

Find minimum element idx between start to end

0 3 4 8 11 10

What next?

minIdx
5

Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 10 11

What next?

start
4

minIdx
5

Selection Sort
0 1 2 3 4 5

start
5

Decrease the interval.

0 3 4 8 10 11

We’re done!

Selection sort
findMinimum(startIdx, L):

minIdx = startIdx

for i in range(startIdx, len(L)):

if L[i] < L[minIdx]:

minIdx = i

return minIdx

Swap
swap(i, j, L):

temp = L[i] # step 1

L[i] = L[j] # step 2

L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j

Selection sort and Bubble sort are O(N2)

L sizes from 100 to 2000

Ti
m

e
in

 m
ill

ise
co

nd
s

