
CS 113 – Computer
Science I

Lecture 21 – Binary
Search, Sorting
Adam Poliak
04/04/2023

Announcements

• Midsemester feedback

• Office hours Thursday
• Cancelled

• Schedule:
• Thursday 04/06 – NO CLASS
• Tuesday 04/11 – remote class
• Thursday 04/13 – Midterm

Outline

• Review – Linear Search
• Binary Search
• Sorting

Linear Search

These previous approaches are examples of linear search

Check each item in a collection one by one

Why is this call linear search?
Time it takes to search increases linearly with the size of the list

Linear Search

What happens (in terms of speed) when the list is very large?
The search becomes slower

In what cases do we do the most work (i.e. perform the most
comparisons)?

When the item is not in the list

In what cases do we do the least amount of work?
When the item is the first element in the list

Guessing game – in class exercise

Pair up:
- Person A chooses a number between 1 and 100
- Person B guesses the number
- Until the guess is correct:

- Person A tells whether the guess is too high or too low
- Person B guesses again

Binary Search

If we could change the list, is there a way to search more efficiently?

Yes, if the list is sorted

Binary Search

Assuming list is sorted in ascending order

High-level Algorithm:
• Step 1: Find the midpoint of the list:
• if the search value is at the midpoint – we are done!
• if the value we are searching for is above the midpoint,

• Search right: cut our list in half and repeat step 1 with the right half of the list
• If the value we are searching for is below the midpoint

• Search left: cut out list in half and repeat step 1 with the left half of the list

Binary Search – Initial Values

lowIndex, highIndex, midIndex

lowIndex = 0
highIndex = length of the array – 1

midIndex = !"#$%&'()*+,*$%&'(
-

Binary Search – Initial Values

lowIndex, highIndex, midIndex

If value at midIndex== searchValue:
Success!

If value at midIndex < searchValue:
lowIndex = midIndex + 1
update midIndex

If value at midIndex > searchValue:
highIndex = midIndex – 1
update midIndex

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 99

low mid high ls[mid]

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 99

low mid high ls[mid]

0 2 5 44

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 99

low mid high ls[mid]

0 2 5 44

3 4 5 99 (found!)

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

0 0 1 -20

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

0 0 1 -20

1 1 1 -4

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

0 0 1 -20

1 1 1 -4

2 1 Not found!

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

4 4 4 “cow”!

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”

6 6

Guessing game – in class exercise

Pair up:
- Person A chooses a number between 1 and 64
- Person B guesses the number
- Until the guess is correct:

- Person A tells whether the guess is too high or too low
- Person B guesses again

After 2 rounds each, choose a number between 1 and 512

Binary Search run time

As the size of our collection increases, the number of guesses/comparisons
increases, but not linearly

The time increases by log 𝑛 (we use base 2)

If our collection contains 8 data points, how many comparisons in worst case
do we make:

log! 8 = 3
If our collection contains 512 data points, how many comparisons in worst
case do we make:

log! 512 = 9

Outline

• Review – Linear Search
• Binary Search
• Sorting

Sorting

10 4 3 0 11 8

0 1 2 3 4 5

How might we sort the list of numbers below.
Can we come up with an algorithm?

Bubble Sort
Compare two adjacent items, and swap if needed

Repeat until largest item is at the back

Repeat process until done

Bubble Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
0

10 4 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
1

4 10 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 10 3 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 3 10 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 10 0 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
4

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 11 8

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and compare pairs with shorter list!

len = 5

What next?

j
1

4 3 0 10 8 11

Last element has
largest element!

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
1

3 4 0 10 8 11

Last element has
largest element!

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 4 0 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
3

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 10 8 11

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and check pairs with shorter list

len = 4

What next?

j
1

3 0 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
2

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
3

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 2

What next?

j
1

0 3 4 8 10 11

Bubble Sort
Idea: bubble highest values to the end of the list; Check a shorter sublist
each time

bubbleSort(L):

for len in range(len(L), 1, -1):

for j in range(1, len): # bubble

if L[j-1] > L[j]:

swap(j-1, j, L)

Bubble sort
swap(i, j, L):

temp = L[i] # step 1

L[i] = L[j] # step 2

L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j

Selection Sort
Not covering on Tuesday 04/04

Selection sort
Repeatedly find the smallest item and put it at front of list

selectionSort(L):

for startIdx in range(len(L)):

minIdx = findMinimum(startIdx, L)

swap(startIdx, minIdx, L)

Selection Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

Selection Sort
0 1 2 3 4 5

start
0

Find minimum element idx between start to end

10 4 3 0 11 8

What next?

minIdx
3

Selection Sort
0 1 2 3 4 5

start
0

Swap the elements at start and minIdx

0 4 3 10 11 8

What next?

minIdx
3

Selection Sort
0 1 2 3 4 5

start
1

Decrease the interval.

0 4 3 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
1

Find minimum element between start to end

0 4 3 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
1

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
2

Decrease the interval.

0 3 4 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
2

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
2

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

Selection Sort
0 1 2 3 4 5

start
3

Decrease the interval.

0 3 4 10 11 8

What next?

Selection Sort
0 1 2 3 4 5

start
3

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
5

Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 11 10

What next?

start
3

minIdx
5

Selection Sort
0 1 2 3 4 5

start
4

Decrease the interval.

0 3 4 8 11 10

What next?

Selection Sort
0 1 2 3 4 5

start
4

Find minimum element idx between start to end

0 3 4 8 11 10

What next?

minIdx
5

Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 10 11

What next?

start
4

minIdx
5

Selection Sort
0 1 2 3 4 5

start
5

Decrease the interval.

0 3 4 8 10 11

We’re done!

Selection sort
findMinimum(startIdx, L):

minIdx = startIdx

for i in range(startIdx, len(L)):

if L[i] < L[minIdx]:

minIdx = i

return minIdx

Swap
swap(i, j, L):

temp = L[i] # step 1

L[i] = L[j] # step 2

L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j

Selection sort and Bubble sort are O(N2)

L sizes from 100 to 2000

Ti
m

e
in

 m
ill

ise
co

nd
s

