
CS 113 – Computer
Science I

Lecture 20 – Searching
Adam Poliak
03/30/2023

Announcements
• HW07
• Due Monday 04/03

• Midsemester feedback

• Office hours today (3-4:45pm)

• Schedule:
• Thursday 04/06 – NO CLASS
• Tuesday 04/11 – remote class
• Thursday 04/13 – Midterm

Outline

• Reviewing relationships!
• Searching
• Sorting - possible

Subtyping vs Subclassing
Interfaces (subtyping)
• implements
• Guarantees same types have same

functions
• Though the same functions are

implemented differently

• A class can implement multiple
interfaces

• An interface can extend another
interface

Inheritance (subclassing)
• extends
• Reuses implementations
• Consequences:

• Dependent on base class
• Changes in superclass affects all

subclasses
• Can re-use code inside classes

• A class can extend just one parent
class

Outline

• Reviewing relationships!
• Searching
• Sorting - possible

Searching

Finding whether an item is in a collection

Applications:
• Specific email in an inbox
• Word in a document
• Course in a list of course offerings
• Professor is on RateMyProfessor
• …

Common search problems

• Is an item in an array?
• Returns: True or False

• Where in an array is the item?
• Returns: the index (an integer)

• Standard: -1 if the item is not found

• How many times does the item appear in an array?
• Returns: a count (an integer)

• What is the min, max, or average value in an array?
• Returns: the value (double)

Linear Search

These previous approaches are examples of linear search

Check each item in a collection one by one

Why is this call linear search?
Time it takes to search increases linearly with the size of the list

Linear Search

What happens (in terms of speed) when the list is very large?
The search becomes slower

In what cases do we do the most work (i.e. perform the most
comparisons)?

When the item is not in the list

In what cases do we do the least amount of work?
When the item is the first element in the list

Binary Search

If we could change the list, is there a way to search more efficiently?

Yes, if the list is sorted

Guessing game – in class exercise

Pair up:
- Person A chooses a number between 1 and 100
- Person B guesses the number
- Until the guess is correct:

- Person A tells whether the guess is too high or too low
- Person B guesses again

Binary Search

Assuming list is sorted in ascending order

High-level Algorithm:
• Step 1: Find the midpoint of the list:
• if the search value is at the midpoint – we are done!
• if the value we are searching for is above the midpoint,

• Search right: cut our list in half and repeat step 1 with the right half of the list
• If the value we are searching for is below the midpoint

• Search left: cut out list in half and repeat step 1 with the left half of the list

Binary Search – Initial Values

lowIndex, highIndex, midIndex

lowIndex = 0
highIndex = length of the array – 1

midIndex = !"#$%&'()*+,*$%&'(
-

Binary Search – Initial Values

lowIndex, highIndex, midIndex

If value at midIndex== searchValue:
Success!

If value at midIndex < searchValue:
lowIndex = midIndex + 1
update midIndex

If value at midIndex > searchValue:
highIndex = midIndex – 1
update midIndex

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 99

low mid high ls[mid]

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 99

low mid high ls[mid]

0 2 5 44

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 99

low mid high ls[mid]

0 2 5 44

3 4 5 99 (found!)

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

0 0 1 -20

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

0 0 1 -20

1 1 1 -4

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 30

low mid high ls[mid]

0 2 5 44

0 0 1 -20

1 1 1 -4

2 1 Not found!

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

Binary search w/ Strings
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

4 4 4 “cow”!

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”

6 6

Sorting

