
CS 113 – Computer 
Science I

Lecture 18 –
Relationships
Adam Poliak
03/23/2023



Announcements

• HW07
• Releasing tonight
• Due Wednesday 03/29

•Midsemester feedback

• Office hours today:
• 4-4:45pm



Outline

• Review
• Access modifiers
• Inheritance



Using objects: some special methods

The constructor method is called when you do a `new`

accesors (aka getters)
return the values of instance variables

mutators (aka setters)
set the values of instance variables

toString() 
returns a string representation of an object



this

`this` is a special keyword that refers to the object inside an instance 
method



Access modifiers

Specify the access-level of instance variables/methods

• public
• code outside of the class can access the variable/method

• private
• code outside of the class cannot access the variable/method

• protected
• Allow subclasses to accesses data in parent class

Default in java is public



Access modifiers

Default in java is public

In this class, make instance data private



Designing Classes

What properties does a bird have and what can it do?
• Size, color, feathers, fly

What properties does a lion have and what can it do?
• Size, color, hair, runs

What properties does a kangaroo have and what can it do?
• Size, color, arms, jumps



Inheritance: feature for organizing classes into 
hierarchies

Animal

Reptile Bird Fish

Snake Tree Lizard Flamingo Crow Penguin
Shark

Hammerhead



Classes can be arranged hierarchically where,
a child class ”inherits” from a parent class

Class inheritance



Inheritance: feature for organizing classes into 
hierarchies

Animal

Reptile Bird Fish

Snake Tree Lizard Flamingo Crow Penguin
Shark

Hammerhead



Subclasses can override methods from parent class

Inheritance: subclasses refine behavior/state



Exercise

1. Implement getter functions for instance variables inside Animal

2. In Zoo.java, call the getters and output the values to console



Program can treat all objects that extend a base class the same

Java automatically calls the specific methods for each subclass

Polymorphism



Polymorphism: Demo
public class Zoo {

public static void main(String[] args) {
Animal animal1 = new Animal();
animal1.locomote();

Animal animal2 = new Reptile();
animal2.locomote();

}
}

public class Reptile extends Animal {
public Reptile() {
}
public void locomote() {

System.out.println("I am walking!");
}

}

public class Animal {
public Animal() {
}
public void locomote() {

System.out.println("I am moving!");
}

}



Exercise: What is the output of this program?

public class Zoo {
public static void main(String[] args) {

Animal animal1 = new Animal();
animal1.locomote();

Animal animal2 = new Fish();
animal2.locomote();

}
}

public class Animal {
public Animal() {
}
public void locomote() {

System.out.println("I am moving!");
}

}

public class Fish extends Animal {
public Fish() {
}
public void locomote() {

System.out.println("I am swimming!");
}

}



Question: How would we implement Minion?
Entity

Player
NPC

Minion

Shop Keeper Quest Giver Orc

King



Inheritance
Entity

Player
NPC

Minion

Shop Keeper Quest Giver Orc

King



Subclasses can override methods from parent class

Inheritance: subclasses refine behavior/state



Inheritance: constructors - super();
super(); 

reference variable that is used to refer parent class constructor



Subclasses can override methods from parent class

Inheritance: subclasses refine behavior/state



Inheritance: constructors - super();



Inheritance: constructors - super();
super(); 

reference variable that is used to refer parent class constructors

Note:
super: 

reference variable that is used to refer parent class object



Inheritance: feature for organizing classes into 
hierarchies

Animal

Reptile Bird Fish

Snake Tree Lizard Flamingo Crow Penguin
Shark

Hammerhead



interfaces

A common set of methods that each implementing class must include (like a blueprint)

Contract for a class to implement a certain set of methods

Implementing class inherits a list of functions from the interface

methods in an interface are abstract
• declared method without an implementation
• contains just method signature

Define an interface using the interface keyword 



Implementing an interface

1. Use implements keyword instead of extends (demo)

2. Implement the functions



Inheritance vs Extends
Interfaces (subtyping)
• implements
• Guarantees same types have same 

functions
• Though the same functions are 

implemented differently

• A class can implement multiple 
interfaces

• An interface can extend another 
interface

Inheritance (subclassing)
• extends
• Reuses implementations
• Consequences:

• Dependent on base class
• Changes in superclass affects all 

subclasses
• Can re-use code inside classes

• A class can extend just one parent 
class


