
CS 113 – Computer
Science I

Lecture 15 – OOP
Adam Poliak
03/16/2023

Announcements
• HW06
• Due Monday 03/20
• No autograder

• Midterms:
• Grades by end of this week
• Was sick over Spring break

• Week after spring break
• Hell week – first ten minutes of Thursdays class

• Midsemester feedback

Homework Hints

If we are iterating through an array, which type of loop should you use?
for loop!

We can split a string into an array of strings using .split(…)

Try/catch:
• only use it for code that can throw the specific error you are catching
• Don’t abuse

Object-oriented programming (OOP)

Method for designing programs in terms of objects

Recall: Top-down design

• the “nouns” in your feature list correspond to classes/data

• the “verbs” correspond to methods

Using objects: some special methods

The constructor method is called when you do a `new`

accesors (aka getters)
return the values of instance variables

mutators (aka setters)
set the values of instance variables

toString()
returns a string representation of an object

Defining classes

By defining our own classes, we can create our own data types

A class definition contains

- the data contained by the new type (instance variables)

- the operations supported by the new type (instance methods)

Example: Defining a class `BankAccount`

What data should it have?
• A name
• Amount of dollars

What operations should it support?
• deposit
• withdraw

this

`this` is a special keyword that refers to the object inside an instance
method

Analogy:

Visualizing programs with objects
class BankAccount {

public String name = ““;
public double dollars = 0.0;

public Point() {
this.name = “”;
this.dollars = 0.;

}

public Point(String clientName, double money) {
this.name = clientName;
this.dollars = money;

}

public void deposit(double money) {
this.dollars = this.dollars + money

}

public static void main(String[] args) {
BankAccount acc = new BankAccount(“Kim”, 0);
acc.depost(541);

acc.withdraw(10);
}

}

Draw a stack diagram

Draw a stack diagram
Function Stack: Created objects

Example: Defining a class `Point`

What data should it have?
• X-coordinate
• y-coordinate
• Name
• color

What operations should it support?

Example: Distance using a static method

• Make a new static function called “add” that takes in two points, adds
their x and y coordinates, and returns a new point

Exercise: Objects and Arrays

Arrays can store objects just like any other type (such as ints, Strings, etc.)

Write a program that asks the user for a number of points and stores them
in an array.

Exercise: Draw a stack diagram for the
previous program

Access modifiers

Specify the access-level of instance variables/methods

• public
• code outside of the class can access the variable/method

• private
• code outside of the class cannot access the variable/method

• protected
• Allow subclasses to accesses data in parent class

Default in java is public

Access modifiers

Default in java is public

In this class, make instance data private

Review:
• Classes are like categories
• Objects are like examples of the categories

Classes can be arranged hierarchically where,
a child class ”inherits” from a parent class

Class inheritance

Inheritance: feature for organizing classes into
hierarchies

Animal

Reptile Bird Fish

Snake Tree Lizard Flamingo Crow Penguin
Shark

Hammerhead

Subclasses can override methods from parent class

Inheritance: subclasses refine behavior/state

Exercise

1. Implement getter functions for instance variables inside Animal

2. In Zoo.java, call the getters and output the values to console

Program can treat all objects that extend a base class the same

Java automatically calls the specific methods for each subclass

Polymorphism

Polymorphism: Demo
public class Zoo {

public static void main(String[] args) {
Animal animal1 = new Animal();
animal1.locomote();

Animal animal2 = new Reptile();
animal2.locomote();

}
}

public class Reptile extends Animal {
public Reptile() {
}
public void locomote() {

System.out.println("I am walking!");
}

}

public class Animal {
public Animal() {
}
public void locomote() {

System.out.println("I am moving!");
}

}

Exercise: What is the output of this program?

public class Zoo {
public static void main(String[] args) {

Animal animal1 = new Animal();
animal1.locomote();

Animal animal2 = new Fish();
animal2.locomote();

}
}

public class Animal {
public Animal() {
}
public void locomote() {

System.out.println("I am moving!");
}

}

public class Fish extends Animal {
public Fish() {
}
public void locomote() {

System.out.println("I am swimming!");
}

}

Question: How would we implement Minion?
Entity

Player
NPC

Minion

Shop Keeper Quest Giver Orc

King

Inheritance
Entity

Player
NPC

Minion

Shop Keeper Quest Giver Orc

King

Exercise: Implement a Bird animal

OOP Example & Design: Vending machine

OOP Design: Vending machine

Defining the snack class
public class Snack {

private int mQuantity;
private double mCost;
private String mName;

public Snack(String name, int quantity, double cost) {
mQuantity = quantity;
mCost = cost;
mName = name;

}
public String getName() {

return mName;
}

public void buy() {
if (mQuantity > 0) {

mQuantity--;
}

}
}

Testing the Snack class

public static void main(String args[])
{

Snack snack = new Snack("Slurm", 10, 1.5);
System.out.println("Snack: "+snack.getName());

}

Objects: Stack diagrams revisited
public static void main(String[] args) {

double userCash = 8.0;
Snack soda = new Snack("Tang", 10, 1.5); // call constructor
soda.buy();

}

Exercise: draw a stack diagram for this
program

Exercise: Define a class BankAccount

BankAccount should have the following data:
• Name
• Amount

BankAccount should have the following operations:

• currentBalance() // returns current amount in the bank account
• withdraw(float amt) // withdraw the given amount from the account
• deposit(float amt) // deposit the given amount to the account

