
CS 113 – Computer
Science I

Lecture 11 - Loops
Adam Poliak
02/22/2023

Announcements

• HW04 –
• due tomorrow night (Wednesday 02/22)

• HW05 - loops
• Due Monday 02/27
• Short implementing just 7 methods

• Post spring break homeworks:
• Due Friday nights

Midterm – Thursday 03/02

In class, closed book

variables (int, double, char, bool, string, array)
Expressions
Methods
Frame diagrams
Conditionals
Recursion
Loops

Agenda

• Announcements
• While Loops
• For Loops

Exercise

Suppose we wanted to ask the user for 6 numbers (int)
and output their sum?

Loops

• Easy way to repeat some computation

• Two kinds of loops:
• While
• For

• Loops repeat block of code until the condition becomes false

Example: While Loop

int val = 0;
int sum = 0;

int count = 0;
while (count < 6) {

System.out.print("Enter a number: ");
val = sc.nextInt();
sum = sum + val;
count = count + 1;

}
System.out.println("The sum is "+sum);

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

1 T 1 3

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

1 T 1 3

2 T 2 5

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

1 T 1 3

2 T 2 5

3 T 3 7

Exercise: Tracing loops

int sum = 10;
int count = 0;
while (count < 6) {

sum = sum - 1;
count = count + 2;

}

Iteration Count < 6 count sum

Accumulator pattern

Idea: Repeatedly update a variable (typically in a loop)

Pattern:
1. Initialize accumulator variable
2. Loop until done

1. Update the accumulator variable

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2
count = count + 1
count = count – 1
product = product * 2
divisor = divisor / 2
message = message + “lol!”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2
count = count + 1
count = count - 1
product = product * 2
divisor = divisor / 2
message = message + “ lol”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2 sum += 2
count = count + 1
count = count - 1
product = product * 2
divisor = divisor / 2
message = message + “ lol”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2 sum += 2
count = count + 1 count += 1
count = count - 1
product = product * 2
divisor = divisor / 2
message = message + “ lol”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2 sum += 2
count = count + 1 count += 1
count = count - 1 count -= 1
product = product * 2
divisor = divisor / 2
message = message + “ lol”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2 sum += 2
count = count + 1 count += 1
count = count - 1 count -= 1
product = product * 2 product *= 2
divisor = divisor / 2
message = message + “ lol”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2 sum += 2
count = count + 1 count += 1
count = count - 1 count -= 1
product = product * 2 product *= 2
divisor = divisor / 2 divisor /= 2
message = message + “ lol”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2 sum += 2
count = count + 1 count += 1
count = count - 1 count -= 1
product = product * 2 product *= 2
divisor = divisor / 2 divisor /= 2
message = message + “ lol” message += “ lol”

Exercise: Write a program that computes
powers of 2
Write a program, LoopPow2.java, that computes powers of twos. For
example,

$ java LoopPow2
Enter an exponent: 0
2 to the power of 0 is 1

$ java LoopPow
Enter an exponent: 1
2 to the power of 1 is 2

$ java LoopPow
Enter an exponent: 4
2 to the power of 4 is 16

Agenda

• Announcements
• While Loops
• For Loops

Example: For Loop

int val = 0;
String valStr = "";
int sum = 0;

for (int count = 0; count < 6; count = count +1) {
System.out.print("Enter a number: ");
valStr = System.console().readLine();
val = Integer.parseInt(valStr);
sum = sum + val;

}
System.out.println("The sum is "+sum);

Example: For Loop

for (int count = 0; count < 6; count = count +1) {

}

initialize condition update

Exercise: Tracing loops

String pattern = ””;
for (int i = 0; i < 3; i++) {

pattern = pattern + “*”;
}
System.out.println(pattern);

Iteration i < 3 i pattern

Exercise: Tracing loops

String pattern = ””;
for (int i = 0; i < 3; i++) {

pattern = pattern + “*”;
}
System.out.println(pattern);

Iteration i < 3 i pattern

0 T 0 “”

1 T 1 “*”

2 T 2 “**”

3 F 3 “***”

Exercise: LoopPattern.java
$ java LoopPattern
Enter a length: 5
--*

$ java LoopPattern
Enter a length: 10
--*-*-*-

$ java LoopPattern
Enter a length: 0

$ java LoopPattern
Enter a length: 1
*

Exercise: Nested loops

$ java Square
Enter a size: 5

$ java Square
Enter a size: 1
*

$ java Square
Enter a size: 0

Iterating through an array

Write a method called printArray that takes in an array of integers and
prints out the values in each array:

printArray({1,2,3,4}) -> “1 2 3 4”

Bank example

Keep track of account balances

Use an array:
Each index represents another account
The value represents the account’s balance

Determine how many accounts we can hold:
Create a new array of fixed size

Bank example

Over time our bank becomes successful, lots of new clients

No more space for new customers

Implementation issue: running out of space in our array

Solution: build a bigger bank!

Building a bigger bank

Copying arrays

3.0

Old bank

6.0 7.0 -2.5

Copying arrays – build the new bank/array

3.0

Old bank

6.0 7.0 -2.5

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

3.0

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

3.0

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

3.0 6.0

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

3.0 6.0

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

3.0 6.0 7.0

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

3.0 6.0 7.0

new bank

Copying arrays – copy over values/customers

3.0

Old bank

6.0 7.0 -2.5

3.0 6.0 7.0 -2.5

new bank

Algorithm

When we run out of space in an array
• Create a new array (that’s a bit bigger)
• Copy over all elements from the older array to the new array

How big should the new array be?

Previous size plus 1
• Pro: not making too much space
• Con: might have to create new arrays a lot of times

As big as possible
• Pro: rarely have to create a new array
• Con: wasted space

Typical solution – previous size x 2

