
CS 113 – Computer
Science I

Lecture 9 - Recursion
Adam Poliak
02/14/2023

Announcements

• HW03 – due tomorrow night (Wed 02/15)

• HW04 - released tonight
• Due Tuesday 02/21

•Midterm in class Thursday 03/02
• Closed book

Course Policies

Penalties

• 1st infraction: 0 on the duplicated code

• 2nd infraction: 0 on the assignment and email to dean

• 3rd infraction: honor board

Agenda

• Announcements
• Recap
• Recursion

Arrays

Idea: Store multiple values into a single variable

Values are sequential

Analogous to a list

Arrays

double val = 3.0;

double[] vals = {3.0, 6.0, 7.0, -2.5};

3.0

val

3.0

vals

6.0 7.0 -2.5

Arrays

Three ways to initialize an array

1. With an initial value
int[] numbers = {1, 2, 5};

2. With allocated space, but uninitialized
int[] numbers = new int[3];

3. With an empty array reference
int[] numbers = null;

Array Indexing

Access individual elements of an array with indexing
array[index]

We use zero-based indexing
first element is 0
last element is length-1

Accessing indices out of range results in a runtime error!

Variable
name Integer

Strings

Strings are implemented as arrays of characters

Get the length of a string with length()
String greeting = “hola”;
int len = greeting.length(); // what is the length?
char c = greeting[2]; // what character is in index 2?

char: New built-in type, denoted with single quote, e.g. ‘a’ or ‘{‘

Exercise: GetCharacters.java

Write a program, GetCharacters.java, that asks the user for a word and
then prints the first, last and middle character.

Enter a word: hola!
FirstIndex: 0 FirstCharacter: h
MiddleIndex: 2 MiddleCharacter: l
LastIndex: 5 LastCharacter: !

Command line arguments

Command line arguments are an array of String

Exercise: Write a program called commandLineArgs.java that

1) prints out 3 command line arguments that are passed in.
2) Compute the sum of three command line arguments (assuming

they are integers)

Agenda

• Announcements
• Recap
• Arrays
• Recursion

Washing dishes

Smart way to wash dishes

Punt the problem to someone else

But we want to wash one dish so we can say we washed a dish

Motivation #2 - adding

I’m going to give you a list of numbers

• Group A: each person adds up all the numbers
• Group B: one person takes the first number and passes the rest to the

next person, repeat this process until no more numbers
• Last person adds the last two numbers and send the result to the previous

person
• Who adds their number with the result …

Motivation #2 adding numbers

• 20,
• 43,
• 13,
• 13,
• 10,
• 43,
• 90,
• 32,
• 42

Motivation #2 adding numbers

• Which was easier?

• Which was like ”smarter” washing dishes?
• How so?

• This is called recursion

Recursion

a function that calls itself

“Simple” way to solve “similar” problems

Creating a recursive algorithms

Rule that “does work” then ”calls itself” on a smaller
version of the problem

Base case that handles the smallest problem
Prevents “infinite recursion”

Recursion example – print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times
Base case: When the number of times to print is 0, stop printing

Recursive functions – base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:
input is empty
problem is at its smallest size

Recursion Example - Factorial

𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ 𝑛 − 2 ∗ …∗ 1

3! = 3 * 2 * 1 = 6

4! = 4 * 3 * 2 * 1 = 24

Visualizing recursion – Factorial example

factorial(5) =
= 5 * factorial(4)
= 5 * 4 * factorial(3)
= 5 * 4 * 3 * factorial(2)
= 5 * 4 * 3 * 2 * factorial(1)
= 5 * 4 * 3 * 2 * 1

Recursion Example – Contains letter

Recursion Visualization – Contains letter

contains(“l”, “apple”) =
contains(“l”, “apple”)

contains(“l”, “pple”)
contains(“l”, “ple”)

contains(“l”, “le”, 3)
return true

Recursion Example – printList

Write a recursive function that prints the contents of an array

Recursion limitations

• Limited number of times we can recurse
• Stackoverflow – too many frames

• Potentially memory inefficient
• If we copy data in subproblems – we’ll worry about this in a few weeks

• Performance: might duplicate unnecessary work
• We’ll define performance later in the semester

