CS 113 — Computer
Science |

Lecture 9 - Recursion

Adam Poliak
02/14/2023




Announcements

* HWO03 — due tomorrow night (Wed 02/15)

* HWO04 - released tonight
* Due Tuesday 02/21

* Midterm in class Thursday 03/02
* Closed book



Course Policies

Academic Integrity in Computer Science

*Discussing ideas and approaches to problems with others on a general level is fine (in fact, we encourage you to discuss general strategies with each other), but you should never
read anyone else’s code or let anyone else read your code.

All code you submit should be your own with the following permissible exceptions: code distributed in class, and code found in the course text book. In these cases, you
should always include detailed comments that indicates on which parts of the assignment you received help, and what your sources were.

Please don’t hesitate to ask the awesome teaching assistants (TAs) for help. They provide TA hours most week nights and are excellent mentors!

Please discuss the readings and associated topics with each other. Work together to understand the material. Reading groups to discuss the material are highly recommended
—we will explore many ideas and it helps to have multiple people working together to understand them.

It is fine to discuss the topics covered in the homeworks, to discuss approaches to problems, and to sketch out general solutions. However, you MUST write up the homework
answers, solutions, and programs individually without sharing specific details, mathematical results, program code, etc.

Under NO circumstances should you share computer code with another student. Similarly, you are not permitted to use code found on the internet for any of your
assignments.

Exams, of course, must be your own individual work.



Penalties

e Istinfraction: O on the duplicated code
« 2dinfraction: 0 on the assighment and email to dean

e 31 infraction: honor board



Agenda

* Announcements
* Recap

* Recursion




Arrays

ldea: Store multiple values into a single variable
Values are sequential

Analogous to a list



Arrays val

3.0

double val = 3.9;

double[] vals = {3.0, 6.0, 7.0, -2.5};

vals

30 | 60 | 70 | -2.5




Arrays
Three ways to initialize an array

1. With an initial value
int[] numbers = {1, 2, 5};

2. With allocated space, but uninitialized
int[] numbers = new int[3];

3. With an empty array reference
int[] numbers = null;



Array Indexing

Access individual elements of an array with indexing

i array[index]
Variable

Integer
name

We use zero-based indexing

first elementis 0
last element is length-1

Accessing indices out of range results in a runtime error!



Strings
Strings are implemented as arrays of characters

Get the length of a string with length()
String greeting = “hola”;
int len = greeting.length(); // what is the length?
char c = greeting[2]; // what character is in index 27

char: New built-in type, denoted with single quote, e.g. ‘@’ or {’



Exercise: GetCharacters.java

Write a program, GetCharacters.java, that asks the user for a word and
then prints the first, last and middle character.

Enter a word: holal
Firstindex: O FirstCharacter: h
Middlelndex: 2 MiddleCharacter: |

Lastindex: 5 LastCharacter: |




Command line arguments

public static void main(String[] args)

Command line arguments are an array of String
Exercise: Write a program called commandLineArgs.java that

1) prints out 3 command line arguments that are passed in.

2) Compute the sum of three command line arguments (assuming
they are integers)



Agenda

* Announcements

* Recap

Arrays

Recursion






Smart way to wash dishes

Punt the problem to someone else

But we want to wash one dish so we can say we washed a dish



Motivation #2 - adding

I’'m going to give you a list of numbers

* Group A: each person adds up all the numbers

* Group B: one person takes the first number and passes the rest to the
next person, repeat this process until no more numbers

* Last person adds the last two numbers and send the result to the previous
person
* Who adds their number with the result ...



Motivation #2 adding numbers

. 20,
. 43,
. 13,
. 13,
- 10,
. 43,
. 90,
. 32,
+ 42



Motivation #2 adding numbers

* Which was easier?

* Which was like “smarter” washing dishes?
* How so?

* This is called recursion



Recursion

a function that calls itself

“Simple” way to solve “similar” problems



Creating a recursive algorithms

Rule that “does work” then “calls itself” on a smaller
version of the problem

Base case that handles the smallest problem
Prevents “infinite recursion”



Recursion example — print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times
Base case: When the number of times to print is O, stop printing



Recursive functions — base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:
Input is empty
problem is at its smallest size



Recursion Example - Factorial
nN=nxsxn—-1)+«n-—-2)* ..x1
31=3*2*1=6

41 =4*3*2%*1=24



Visualizing recursion — Factorial example

factorial(5) =
=5 * factorial(4)

=5%*4 * factorial(3)
=5%4 *3 * factorial(2)
=5%4 *3 *2 * factorial(1)

=5%4 *3 *2%1



Recursion Example — Contains letter



Recursion Visualization — Contains letter
IIIII’ llapplell) —

IIIII’ llapplell)

IIIII’ llpplell)

lll” o
’

contains(
contains(
contains(

ple”)
contains(“l”, “le”, 3)

contains(

return true



Recursion Example — printList

Werite a recursive function that prints the contents of an array



Recursion limitations

e Limited number of times we can recurse
» Stackoverflow — too many frames

* Potentially memory inefficient
* If we copy data in subproblems — we’ll worry about this in a few weeks

* Performance: might duplicate unnecessary work
 We'll define performance later in the semester



