
CS 113 – Computer
Science I

Lecture 8 – Arrays,
Recursion
Adam Poliak
02/09/2023

Announcements

• Assignment 02 – moved deadline for tomorrow

• Assignment 03 – released last night
• Due Wednesday 02/15

• Today’s office hours:
• 3:00 – 4:45

Agenda

• Announcements
• Recap
• Arrays
• Recursion

Style
• How we format our programs is very important
• Like rules of etiquette around eating and keep a clean appearance
• Like punctuation rules, it helps make text more readable

• Variable names should be descriptive

• Indentation is very important
• Every statement inside a pair of braces must be indented

• Braces should be placed consistently

Comparing strings

• In Java, you cannot directly compare strings: use compareTo

String a = “apple”;
String b = “banana”;
if (a.compareTo(b) == 0) {

System.out.println(“a and b match!”);
}
if (a.compareTo(b) != 0) {
System.out.println(“a and b DO NOT match!”);
}

Lexicographic Values/Order

• Strings are ordered lexicographically

• Generally, the same order as alphabetical order, with some caveats

• The characters of a string each correspond to a number

ASCII

https://www.asciitable.com/

StringCompare.java
String first = "a";
String second = "A";
int asciia = (int) first.charAt(0);
int asciib = (int) second.charAt(0);
System.out.println("ASCII Code for "+first+" is " + asciia);
System.out.println("ASCII Code for "+second+" is " + asciib);

if (first.compareTo(second) == 0) {
System.out.println(first+" is equal to "+second);

}
else if (first.compareTo(second) < 0) {

System.out.println(first+" is less than "+second);
}
else if (first.compareTo(second) > 0) {

System.out.println(first+" is greater than "+second);
}

$ java StringCompare
ASCII Code for a is 97
ASCII Code for A is 65
a is greater than A

Exercise: IsPrimary

Write a program that asks the user for a color and prints whether the
color is primary or not.

• The primary colors are “red”, “green”, “blue”

• All other inputs are non-primary
$ java IsPrimary
Enter a color: green
green is not primary

$ java IsPrimary
Enter a color: blue
blue is primary

Agenda

• Announcements
• Recap
• Arrays
• Recursion

Arrays

Arrays

Idea: Store multiple values into a single variable

Values are sequential

Analogous to a list

Arrays

double val = 3.0;

double[] vals = {3.0, 6.0, 7.0, -2.5};

3.0

val

3.0

vals

6.0 7.0 -2.5

Arrays

boolean[] flags = {true, false};

String[] greetings = {"hi", "hola", "ciao", "aloha"};

Arrays

Three ways to initialize an array

1. With an initial value

2. With allocated space, but uninitialized

3. With an empty array reference

Arrays

Three ways to initialize an array

1. With an initial value
int[] numbers = {1, 2, 5};

2. With allocated space, but uninitialized
int[] numbers = new int[3];

3. With an empty array reference
int[] numbers = null;

Array Indexing

Access individual elements of an array with indexing
array[index]

We use zero-based indexing
first element is 0
last element is length-1

Accessing indices out of range results in a runtime error!

Variable
name Integer

Exercise: print backwards

Write a program, Backwards.java, that asks the user for 5 integers and
then prints the list of numbers in reverse order

Strings

Strings are implemented as arrays of characters

Get the length of a string with length()
String greeting = “hola”;
int len = greeting.length(); // what is the length?
char c = greeting[2]; // what character is in index 2?

char: New built-in type, denoted with single quote, e.g. ‘a’ or ‘{‘

Exercise: GetCharacters.java

Write a program, GetCharacters.java, that asks the user for a word and
then prints the first, last and middle character.

Enter a word: hola!
FirstIndex: 0 FirstCharacter: h
MiddleIndex: 2 MiddleCharacter: l
LastIndex: 5 LastCharacter: !

Command line arguments

Command line arguments are an array of String

Exercise: Write a program called commandLineArgs.java that prints out
3 command line arguments that are passed in.

Agenda

• Announcements
• Recap
• Arrays
• Recursion

Washing dishes

Smart way to wash dishes

Punt the problem to someone else

But we want to wash one dish so we can say we washed a dish

Motivation #2 - adding

I’m going to give you a list of numbers

• Group A: each person adds up all the numbers
• Group B: one person takes the first number and passes the rest to the

next person, repeat this process until no more numbers
• Last person adds the last two numbers and send the result to the previous

person
• Who adds their number with the result …

Motivation #2 adding numbers

• 20,
• 43,
• 13,
• 13,
• 10,
• 43,
• 90,
• 32,
• 42

Motivation #2 adding numbers

• Which was easier?

• Which was like ”smarter” washing dishes?
• How so?

• This is called recursion

Recursion

a function that calls itself

“Simple” way to solve “similar” problems

Creating a recursive algorithms

Rule that “does work” then ”calls itself” on a smaller
version of the problem

Base case that handles the smallest problem
Prevents “infinite recursion”

Recursion example – print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times
Base case: When the number of times to print is 0, stop printing

Recursive functions – base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:
input is empty
problem is at its smallest size

Recursion Example - Factorial

𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ 𝑛 − 2 ∗ …∗ 1

3! = 3 * 2 * 1 = 6

4! = 4 * 3 * 2 * 1 = 24

Visualizing recursion – Factorial example

factorial(5) =
= 5 * factorial(4)
= 5 * 4 * factorial(3)
= 5 * 4 * 3 * factorial(2)
= 5 * 4 * 3 * 2 * factorial(1)
= 5 * 4 * 3 * 2 * 1

Recursion Example – Contains letter

Recursion Visualization – Contains letter

contains(“l”, “apple”) =
contains(“l”, “apple”)

contains(“l”, “pple”)
contains(“l”, “ple”)

contains(“l”, “le”, 3)
return true

Recursion Example – printList

Write a recursive function that prints the contents of an array

Recursion limitations

• Limited number of times we can recurse
• Stackoverflow – too many frames

• Potentially memory inefficient
• If we copy data in subproblems – we’ll worry about this in a few weeks

• Performance: might duplicate unnecessary work
• We’ll define performance later in the semester

