
CS 113 – Computer
Science I

Lecture 7 –
Conditionals, Recursion
Adam Poliak
02/07/2023

Announcements
• Assignment 02 – due tomorrow

• Assignment 03 – released tonight or tomorrow
• Due next week

• Great participation on Piazza!

• Thursday’s office hours:
• 3:30(ish) – 4:45
• Potentially 3:00pm, will confirm later tonight

Agenda

• Announcements
• Recap
• Comparing Strings
• Recursion

Recap

Boolean expressions

Relational & Logical Operators

Exercise: Blackjack

Write a program Blackjack.java which generates a random value
between 2 and 21

• If the value is 21, print the value and “Blackjack” to the console
• If the value is between 17 and 20, print the value and “Stand” to the

console
• If the value is less than 17, print the value and “Hit me!” to the

console

Style
• How we format our programs is very important
• Like rules of etiquette around eating and keep a clean appearance
• Like punctuation rules, it helps make text more readable

• Variable names should be descriptive

• Indentation is very important
• Every statement inside a pair of braces must be indented

• Braces should be placed consistently

Agenda

• Announcements
• Recap
• Comparing Strings
• Recursion

Comparing strings

• In Java, you cannot directly compare strings: use compareTo
• Javadocs: https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Returns:
• the value 0 if the argument string is equal to this string;
• a value less than 0 if this string is lexicographically less than the string argument;
• and a value greater than 0 if this string is lexicographically greater than the string

argument.

Comparing strings

• In Java, you cannot directly compare strings: use compareTo

String a = “apple”;
String b = “banana”;
if (a.compareTo(b) == 0) {

System.out.println(“a and b match!”);
}
if (a.compareTo(b) != 0) {
System.out.println(“a and b DO NOT match!”);
}

Lexicographic Values/Order

• Strings are ordered lexicographically

• Generally, the same order as alphabetical order, with some caveats

• The characters of a string each correspond to a number

ASCII

https://www.asciitable.com/

StringCompare.java
String first = "a";
String second = "A";
int asciia = (int) first.charAt(0);
int asciib = (int) second.charAt(0);
System.out.println("ASCII Code for "+first+" is " + asciia);
System.out.println("ASCII Code for "+second+" is " + asciib);

if (first.compareTo(second) == 0) {
System.out.println(first+" is equal to "+second);

}
else if (first.compareTo(second) < 0) {

System.out.println(first+" is less than "+second);
}
else if (first.compareTo(second) > 0) {

System.out.println(first+" is greater than "+second);
}

$ java StringCompare
ASCII Code for a is 97
ASCII Code for A is 65
a is greater than A

Exercise: IsPrimary

Write a program that asks the user for a color and prints whether the
color is primary or not.

• The primary colors are “red”, “green”, “blue”

• All other inputs are non-primary
$ java IsPrimary
Enter a color: green
green is not primary

$ java IsPrimary
Enter a color: blue
blue is primary

Agenda

• Announcements
• Recap
• Comparing Strings
• Recursion

Washing dishes

Smart way to wash dishes

Punt the problem to someone else

But we want to wash one dish so we can say we washed a dish

Motivation #2 - adding

I’m going to give you a list of numbers

• Group A: each person adds up all the numbers
• Group B: one person takes the first number and passes the rest to the

next person, repeat this process until no more numbers
• Last person adds the last two numbers and send the result to the previous

person
• Who adds their number with the result …

Motivation #2 adding numbers

• 20,
• 43,
• 13,
• 13,
• 10,
• 43,
• 90,
• 32,
• 42

Motivation #2 adding numbers

• Why was easier?

• Why was like ”smarter” washing dishes?
• How so?

• This is called recursion

Recursion

a function that calls itself

“Simple” way to solve “similar” problems

Creating a recursive algorithms

Rule that “does work” then ”calls itself” on a smaller
version of the problem

Base case that handles the smallest problem
Prevents “infinite recursion”

Recursion example – print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times
Base case: When the number of times to print is 0, stop printing

Recursive functions – base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:
input is empty
problem is at its smallest size

Recursion Example - Factorial

𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ 𝑛 − 2 ∗ …∗ 1

3! = 3 * 2 * 1 = 6

4! = 4 * 3 * 2 * 1 = 24

Visualizing recursion – Factorial example

factorial(5) =
= 5 * factorial(4)
= 5 * 4 * factorial(3)
= 5 * 4 * 3 * factorial(2)
= 5 * 4 * 3 * 2 * factorial(1)
= 5 * 4 * 3 * 2 * 1

Recursion Example – Contains letter

Recursion Visualization – Contains letter

contains(“l”, “apple”) =
contains(“l”, “apple”)

contains(“l”, “pple”)
contains(“l”, “ple”)

contains(“l”, “le”, 3)
return true

Recursion Example – printList

Write a recursive function that prints the contents of an array

Recursion limitations

• Limited number of times we can recurse
• Stackoverflow – too many frames

• Potentially memory inefficient
• If we copy data in subproblems – we’ll worry about this in a few weeks

• Performance: might duplicate unnecessary work
• We’ll define performance later in the semester

