CS 113 — Computer
Science |

W Lecture /7 —

TSP eY ™ Conditionals, Recursion
A (IR E

Adam Poliak
02/07/2023

Announcements

e Assignment 02 — due tomorrow

* Assignment 03 — released tonight or tomorrow
* Due next week

* Great participation on Piazza!

* Thursday’s office hours:
e 3:30(ish) — 4:45
e Potentially 3:00pm, will confirm later tonight

Agenda

Announcements

Recap

Comparing Strings

Recursion

Recap

Boolean expressions

Relational & Logical Operators

Exercise: Blackjack

Write a program Blackjack.java which generates a random value
between 2 and 21

* If the value is 21, print the value and “Blackjack” to the console

* If the value is between 17 and 20, print the value and “Stand” to the
console

* If the value is less than 17, print the value and “Hit me!” to the
console

Style

* How we format our programs is very important
* Like rules of etiquette around eating and keep a clean appearance
* Like punctuation rules, it helps make text more readable

* Variable names should be descriptive

* Indentation is very important
* Every statement inside a pair of braces must be indented

* Braces should be placed consistently

Agenda

Announcements

Recap

Comparing Strings

Recursion

Comparing strings

* In Java, you cannot directly compare strings: use COMpPa reTo
* Javadocs: https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

compareTo

public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each character in the strings. The character sequence represented by
this string object is compared lexicographically to the character sequence represented by the argument string. The result is a negative integer if this String
object lexicographically precedes the argument string. The result is a positive integer if this String object lexicographically follows the argument string. The result
is zero if the strings are equal; compareTo returns 0 exactly when the equals (Object) method would return true.

This is the definition of lexicographic ordering. If two strings are different, then either they have different characters at some index that is a valid index for both
strings, or their lengths are different, or both. If they have different characters at one or more index positions, let k be the smallest such index; then the string
whose character at position k has the smaller value, as determined by using the < operator, lexicographically precedes the other string. In this case, compareTo
returns the difference of the two character values at position k in the two string -- that is, the value:

this.charAt(k)-anotherString.charAt (k)

If there is no index position at which they differ, then the shorter string lexicographically precedes the longer string. In this case, compareTo returns the difference
of the lengths of the strings -- that is, the value:

this.length()-anotherString.length()

Specified by:

compareTo in interface Comparable<String>
Parameters:

anotherString - the String to be compared.
Returns:

the value 0 if the argument string is equal to this string; a value less than 0 if this string is lexicographically less than the string argument; and a value greater
than 0 if this string is lexicographically greater than the string argument.

compareTo

public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each character in the strings. The character sequence represented by
this string object is compared lexicographically to the character sequence represented by the argument string. The result is a negative integer if this String
object lexicographically precedes the argument string. The result is a positive integer if this String object lexicographically follows the argument string. The result
is zero if the strings are equal; compareTo returns 0 exactly when the equals (Object) method would return true.

This is the definition of lexicographic ordering. If two strings are different, then either they have different characters at some index that is a valid index for both
strings, or their lengths are different, or both. If they have different characters at one or more index positions, let k be the smallest such index; then the string
whose character at position k has the smaller value, as determined by using the < operator, lexicographically precedes the other string. In this case, compareTo
returns the difference of the two character values at position k in the two string -- that is, the value:

this.charAt(k)-anotherString.charAt (k)

If there is no index position at which they differ, then the shorter string lexicographically precedes the longer string. In this case, compareTo returns the difference
of the lengths of the strings -- that is, the value:

this.length()-anotherString.length()

Specified by:

compareTo in interface Comparable<String>
Parameters:

anotherString - the String to be compared.
Returns:

the value 0 if the argument string is equal to this string; a value less than 0 if this string is lexicographically less than the string argument; and a value greater
than 0 if this string is lexicographically greater than the string argument.

public int compareTo(String anotherString)

Parameters:

anotherString - the String to be compared.

Returns:

 the value 0 if the argument string is equal to this string;
» a value less than 0 if this string is lexicographically less than the string argument;

« and a value greater than 0 if this string is lexicographically greater than the string
argument.

Comparing strings

* In Java, you cannot directly compare strings: use COMpPa reTo

String a = “apple”;

String b = “banana”;

if (a.compareTo(b) == 0) {
System.out.printin(“a and b match!”);

}

if (a.compareTo(b) !=0) {

System.out.println(“a and b DO NOT match!”);

}

Lexicographic Values/Order

* Strings are ordered lexicographically
* Generally, the same order as alphabetical order, with some caveats

* The characters of a string each correspond to a number

Dec_Hx Oct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 &«#32; Space|l 64 40 100 &«#64; [96 60 140 `
ASC' | 1 1 001 S0H {start of heading) 33 21 041 ! ! 65 41 101 «#65; A | 97 61 141 a a
2 2 002 5TX (start of text) 34 22 042 &«#34; " 66 42 102 &«#66; B 98 62 142 &«#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 &«#67; C 99 A3 143 «#99; C
4 4 004 EOT (end of transmission) 36 24 044 $ § 68 44 104 &«#68; D (100 64 144 &#l00; d
5 5 005 ENQ (encquiry) 37 25 045 % % 69 45 105 «#69; E |10l 65 145 e e
6 6 006 ACK (acknowledge) 38 26 D46 & & 70 46 106 &«#70; F (102 66 146 &#l02; €
7 7 007 BEL (bell) 39 27 047 ' 71 47 107 «#71; G |103 67 147 g 0
& © 010 BE5 (backspace) 40 28 050 &«#40; | 72 48 110 H H (104 68 150 h h
9 9 011 TAE (horizontal tab) 41 29 051 l1;) 73 49 111 &«#73; I (105 69 151 i 1
10 A 0l2 LF (NL line feed, new line)| 42 24 052 * 7 74 44 112 &«#74; J [106 64 152 &#l06; 7
11 B 013 VT (wvertical tab) 43 2B 053 + + 75 4B 113 &«#75; K (107 6B 153 k kK
12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 «#76; L (108 6C 154 &«#108; 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 &«#77; M [109 6D 155 m n
14 E 016 30 (shift out) 46 2E 056 . . 78 4E 116 &«#78; N (110 6E 156 &#l110; n
15 F 017 5I (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 |111 6F 157 &#lll; 0O
16 10 020 DLE (data link escape) 43 30 060 0: 0 80 50 120 «#80; P |112 70 160 &«#ll2; p
17 11 021 DC1l (device control 1) 49 31 061 1 1 81 51 121 &«#81; 0 |113 71 161 &«#113; 4
18 12 022 DCZ (device control 2) 50 32 062 2 2 82 52 122 «#82; R |114 72 162 &«#1ll4; ¢
19 13 023 DC3 (device control 3) 51 33 063 3 3 83 53 123 «#83; 5 |115 73 163 s =
20 14 024 DC4 (device control 4) 52 34 064 4 4 84 54 124 «#84; T |116 74 164 &«#ll6; ©
21 15 025 NAK (negative acknowledge) 53 35 065 5 5 85 55 125 &«#385; U [117 75 165 u u
22 16 026 SYN (synchronous idle) 54 36 066 6 6 86 56 126 &«#86; V |118 76 166 v V
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#387; W |119 77 167 w w
24 18 030 CAN (cancel) 56 38 070 8 § 88 58 130 &«#83; X |120 78 170 x X
25 19 031 EM (end of medium) 57 39 071 9 9 89 59 131 &«#89; Y |121 79 171 &«#1lZ21; ¥
26 14 032 SUE (substitute) 58 34 072 : : 90 SA 132 «#90; Z |122 7A 172 &«#l22; Z
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 133 &«#91; [(123 7B 173 { {
28 1C 034 F5 (file separator) 60 3C 074 &«#60; < 92 5C 134 &«#92; \ [l24 7C 174 &«#124; |
29 1D 035 G5 (group separator) 61 3D 075 &«#6l; = 93 5D 135 &«#93;] [125 7D 175 } }
30 1E 036 RS (record separator) 62 3E 076 Z; > 94 SE 136 «#94; *~ |126 7E 176 &#l26; ~
31 1F 037 US (unit separator) 63 3F 077 ? 2 95 SF 137 &«#95; _ (127 7F 177 &«#127; DEL

Source: www.LookupTables.com

https://www.asciitable.com/

StringCompare.java

String first = "a";

String second ="A";

int asciia = (int) first.charAt(0);

int asciib = (int) second.charAt(0);
System.out.printIn("ASCIl Code for "+first+" is " + asciia);

S java StringCompare
ASCII Code for a is 97
ASCII Code for A is 65

a is greater than A

System.out.printIn("ASCIl Code for "+second+" is " + asciib);

if (first.compareTo(second) ==0) {
System.out.printIn(first+" is equal to "+second);

}

else if (first.compareTo(second) < 0) {
System.out.printIn(first+" is less than "+second);

}

else if (first.compareTo(second) > 0) {
System.out.printin(first+" is greater than "+second);

}

Exercise: IsPrimary

Write a program that asks the user for a color and prints whether the
color is primary or not.

* The primary colors are “red”, “green”, “blue”

S java IsPrimary
* All other inputs are non-primary Enter a color: green

green is not primary

S java IsPrimary
Enter a color: blue
blue is primary

Agenda

* Announcements

* Recap

Comparing Strings

Recursion

-

Washing dishes
R

e

o—

Smart way to wash dishes

Punt the problem to someone else

But we want to wash one dish so we can say we washed a dish

Motivation #2 - adding

I’'m going to give you a list of numbers

* Group A: each person adds up all the numbers

* Group B: one person takes the first number and passes the rest to the
next person, repeat this process until no more numbers

* Last person adds the last two numbers and send the result to the previous
person
* Who adds their number with the result ...

Motivation #2 adding numbers

. 20,
. 43,
. 13,
. 13,
- 10,
. 43,
. 90,
. 32,
+ 42

Motivation #2 adding numbers

* Why was easier?

* Why was like “smarter” washing dishes?
* How so?

* This is called recursion

Recursion

a function that calls itself

“Simple” way to solve “similar” problems

Creating a recursive algorithms

Rule that “does work” then “calls itself” on a smaller
version of the problem

Base case that handles the smallest problem
Prevents “infinite recursion”

Recursion example — print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times
Base case: When the number of times to print is O, stop printing

Recursive functions — base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:
Input is empty
problem is at its smallest size

Recursion Example - Factorial
nN=nxsxn—-1)+«n-—-2)* ..x1
31=3*2*1=6

41 =4*3*2%*1=24

Visualizing recursion — Factorial example

factorial(5) =
=5 * factorial(4)

=5%*4 * factorial(3)
=5%4 *3 * factorial(2)
=5%4 *3 *2 * factorial(1)

=5%4 *3 *2%1

Recursion Example — Contains letter

Recursion Visualization — Contains letter
IIIII’ llapplell) —

IIIII’ llapple”)

IIIII’ llpplell)

lll” o
’

contains(
contains(
contains(

ple”)
contains(“l”, “le”, 3)

contains(

return true

Recursion Example — printList

Werite a recursive function that prints the contents of an array

Recursion limitations

e Limited number of times we can recurse
» Stackoverflow — too many frames

* Potentially memory inefficient
* If we copy data in subproblems — we’ll worry about this in a few weeks

* Performance: might duplicate unnecessary work
 We'll define performance later in the semester

