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Abstract

Why do we need autonomous mental development
(AMD) for intelligent robots? This paper introduces
a concept called task muddiness which supports AMD
as a necessity for higher intelligence. The task mud-
diness is meant to be inclusive and extendable in na-
ture. The intelligence required to execute a task is mea-
sured by the composite muddiness of the task measured
by a number of muddiness axes. The composite mud-
diness explains why many challenging tasks, such as
the DARPA Grand Challenge 2005 (DARPA 2004), are
muddy and why the autonomous mental development
(AMD) approach is necessary for muddy tasks.

Introduction
Despite the power of modern computers, we have seen a
paradoxical picture of artificial intelligence (AI): Comput-
ers have done very well in areas that are typically consid-
ered very difficult (by humans), such as playing (simulated)
chess games. However, they have done poorly in areas that
are commonly considered easy (by humans), such as vision,
audition and natural language understanding.

There have been numerous studies on measuring the in-
telligence of AI systems. The “imitation game,” proposed
by Alan M. Turing (Turing 1950), now known as the Turing
Test, has greatly influenced the ways machine intelligence
was studied. The limitation of such a symbolic text-based
test has now been better recognized (e.g., see the article by
Donald Michie (Michie 1993) and Donald Norman (Nor-
man 1991)). The proposed Total Turing Test (Russell &
Norvig 2003) includes computer vision to perceive objects
and robotics to manipulate objects and move about. The
National Institute of Standards and Technology (NIST) has
been hosting Workshops on Measuring the Performance and
Intelligence of Systems, known as PerMIS, held annually
since 2000 (Meystel & Messina 2000), where the proposed
metrics are largely application-specific and, thus, lack the
applicability to a wide variety of tasks. There have been
some studies on the procedures for evaluating research arti-
cles in AI (see, e.g., Cohen & Howe 1988 (Cohen & Howe
1988)) but not tasks.
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Intelligent Quotient (IQ) and Emotional Quotient (EQ)
(Goleman 1995) have been proposed to measure human in-
telligence. The tests in the field of psychometrics concen-
trate on the differentiation of human individuals in a human
age group. They are not designed for measuring intelligence
between humans and machines, or between humans and an-
imals. Howard Gardner (Gardner 1993) proposed the con-
cept of “Multiple Intelligences,” in the sense that human in-
telligence is displayed not only in logical-mathematical rea-
soning or emotional aspects, but also through other aspects
such as bodily-kinesthetic and spatial skills. Giulio Tononi
& Gerald Edelman proposed to use mutual information to
measure the complexity of integrated biological neural sys-
tems (Tononi & Edelman 1998). Nevertheless, these studies
do not provide a mechanism for evaluating how muddy tasks
are across many AI tasks.

The term “muddy” is used to refer to tasks that are not
“clean.” In this paper, a composite muddiness is proposed,
which contains an open number of axes of muddiness (fac-
tors), each measuring a different characteristic of a given
task. It is impractical to enforce independence among these
axes, but each axis should measure a different muddiness
characteristic. We do not require each axis to represent the
same “level” of information, since this “simple-minded” re-
quirement is counter productive. Some tasks are very gen-
eral - they can be also called “problems,” but we use the term
“task” for consistency.

Five muddiness categories have been identified in this pa-
per so that all of the muddiness factors fall into these five cat-
egories. Based on the muddiness proposed here, this paper
outlines three categories of tasks Categories 1 to 3 and ex-
plains why the current machines perform the tasks in Cate-
gory 1 well, but not Category 2 and worse in Category 3. Fi-
nally we discuss the composite muddiness as a performance
metric of intelligence, as a candidate among other alterna-
tives that have been proposed (see, e.g., an excellent survey
by Russell and Norvig (Russell & Norvig 2003)).

This paper does not directly address how to construct an
intelligent machine. However, the work proposed here is
important to examining an AI task. Albert Einstein said:
“The mere formulation of a problem is far more essential
than its solution.” Some tasks to which we have applied
our AMD approach have demonstrated that the approach has
a high potential for dealing with very muddy tasks (Weng



2004).
Section 2 discusses the basic principles that motivated the

muddiness concept. Section 3 gives an example about mud-
diness factors, which naturally calls for the multiple muddi-
ness presented in Section 4. Section 5 introduces the com-
posite muddiness. Section 6 uses the muddiness concept to
introduce three categories of AI tasks. Section 7 discusses
the composite muddiness as a metrics for intelligence and
Section 8 concludes.

Principles of Task Muddiness
We need to understand tasks using a generally applicable
muddiness measure.

Characteristics of muddiness
The concept of muddiness was motivated by the following
considerations.

1. Across task domains. Muddiness can incorporate any
task. E.g., a computer chess playing task can be compared
with a face recognition task, in an intuitive way.

2. Independent of technology level. A task that is muddy to-
day remains muddy in the future, no matter how advanced
computer technology becomes.

3. Independent of the performer. A task that is muddy for
machines is also for humans as well. However, humans
are good at performing muddy tasks.

4. Quantifiable. It helps us to understand why an AI task is
difficult in a quantitative way.

5. Amenable to evaluating state-of-the-art intelligent ma-
chines. It objectively measures the overall capacity re-
quirement of AI tasks and, consequently, the machines
that execute these tasks.

6. Indicative of human intelligence. It enables us to fully
appreciate human intelligence along multiple dimensions.

Before we are able to discuss muddiness, we first consider a
system as an agent.

A system as an agent
A system for performing one or more tasks is an agent.
By standard definition, an agent is something that senses
and acts (see, e.g., an excellent textbook by Russell &
Norvig (Russell & Norvig 2003) and an excellent survey by
Franklin (Franklin & Graesser 1997)).

The input to the agent is what it senses from its external
environment and the output from the agent is the action that
it applies to the external environment.

A human as an agent constructor
Depending how a task is specified, a task can be a subtask
of another more complex task. For example, playing a chess
game is a subtask of participating in a chess tournament.

Suppose that we are given a task to be performed by a
machine. Here, we need to distinguish to whom the task is
given. Is it given to a machine directly or to a human devel-
oper who fabricates the machine and writes programs for it?

Developmental phase:

Task

Performance phase:

Input Output

Agent

Agent

State

Figure 1: The manual developmental phase and the automatic per-
formance phase. The developmental phase is not automated. The
performance phase is partially or fully automated. The agent may
have its internal state when it performs a task in the performance
phase.

We consider that a task is given to a human being who con-
structs and writes programs for the machine which executes
the task. Therefore, two phases are involved, the develop-
mental phase and the performance phase, as illustrated in
Fig. 1.

In the developmental phase, a human being accepts a task
that the machine is supposed to perform. He understands
and analyzes the task and then constructs an agent which is
the machine that is supposed to perform the task. Therefore,
the product of the developmental phase is an agent. In the
performance phase, the agent is put into operation. It accepts
an input and produces an output. Through this process, the
agent performs an instance of the task. It may accept more
input and produce an output for each instance. This way, the
agent can perform more instances of the same task.

Muddiness Frame Examples
It is not very beneficial to put the muddiness of a task into a
single abstract measure that is arbitrarily defined. Any task
can be positioned in a muddiness frame to allow a visual-
ization about how muddy this task is compared with other
tasks. The muddiness frame is like a coordinate system that
we use to specify a point. Each axis represents a factor of
muddiness.

Let us first consider two such muddiness factors: the raw-
ness of input and the size of input.

If the input to a machine is edited by a human being, the
input rawness is low, e.g., computer chess playing and (text-
based) language processing. If the input is directly from a
sensor without human editing, the rawness is high, e.g., vi-
sual recognition and sonar-based navigation.

The input space is a space that contains all of the possi-
ble inputs. The size of the input space, or the size of input
for short, indicates the number of possible different values
that the task has to consider. For a symbolic input where
each frame is an alphanumeric input from A to Z followed
by 0 to 9, its input size is 26 + 10 = 36. For a vector in-
put of dimension d whose each component takes m differ-
ent values, the size of input is md. For example, an image of
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Figure 2: A muddiness frame for two muddiness factors, rawness
of input and size of input. This diagram is for conceptual visual-
ization only.

d = 240×320 = 76800 pixels, with each pixel taking a byte
from 0 to 255, the size of input is 25676800, an astronomical
number.

The muddiness frame using only these two muddiness
factors is shown in Fig. 2. Some typical tasks are positioned
in this frame. The direction of each axis denotes the di-
rection of increase in the corresponding muddiness factor.
Since the meaning of each muddiness factor is not simple,
it is not useful to assign a concrete number to each class
of tasks. Thus, we should interpret the coordinates of these
tasks qualitatively instead of quantitatively.

The next factor to introduce is the richness of the goal of a
given task, or richness of goal for short. It means how diffi-
cult it is to describe the goal of the task in a well-established
mathematical terminology. We insist on mathematical ter-
minology since it is a concise and precise way of expressing
programs. A task that can be fully described in mathemati-
cal terms can be converted into an algorithm without much
ambiguity. Conversely, a program can always be written in
mathematical terminology. We also insist that the descrip-
tion must be in terms of the input of the system since in-
formation available to the agent is from its input when it
performs the task.

Consider playing a computer chess game. The goal of
the task is to checkmate your opponent’s king. One can use
mathematical terminology to describe this condition. Thus,
the richness of goal is low.

Next, consider identification of humans from video im-
ages, a task of visual recognition. A series of questions are
raised if you attempt to describe this task in terms of input
to the system. What do you mean by humans? How do you
describe an image that contains a human and one that does
not? ... You will quickly realize that it is almost impossible
to describe this task in mathematical terminology based on
only image input. You probably can describe a human face
well in terms of common sense, but you cannot precisely
describe a human face well in terms of image input.

Take language translation as another example. It is almost
impossible to write down mathematically the goal of trans-
lation for an article based on the text input. What do you
mean by translating well? What do you mean by “mean-
ing” in mathematical terminology? ... Thus, it is extremely
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Figure 3: A muddiness frame for three muddiness factors.

difficult to express the goal of translation in mathematical
terminology.

Augmenting the previous muddiness frame, by adding the
richness of the goal, gives the muddiness frame shown in
Fig. 3. We should not consider such positions for these tasks
as absolute. A particular task arising in actual application
can vary tremendously in all the three muddiness factors.
For instance, technical language translation from text in a
very specific domain with a very small vocabulary may not
have a very high measure in richness of goal.

Muddiness Frames
In order to acquire a more complete view about the mud-
diness of any given task arising from the real world, we
need to introduce more factors for muddiness. We divide
the factors into five categories: external environment, input,
internal environment, output, and goal. The external envi-
ronment is the world in which the agent works. The input
is the information that the agent receives from the external
environment. The internal environment is the internal repre-
sentation of the agent, i.e., its “brain” (does not include its
body). The output is the output from the agent. The goal is
the objectives of the tasks that the agent performs.

It can be proved that given a task, the five categories con-
stitute a partition of the world:

Theorem 1 Suppose that U is the universe that consists of
everything in the world, real and imaginary. Given a task T
and an agent’ brain B required to perform the task, let See,
Sip, Sie, Sop and Sgl denote the five subsets of U : the exter-
nal environment of B, input into B, internal environment of
B, output from B and the goal of T , respectively. See, Sip,
Sie, Sop and Sgl, with a formal definition, give a partition
of U . That is, these sets are non-overlapping (intersection is
an empty set), and the union of these sets equals the universe
U :

U = See ∪ Sip ∪ Sie ∪ Sop ∪ Sgl. (1)

The proof is omitted due to the space limit. The above the-
orem indicates that the five sets contain everything in the
universe, nothing has been neglected. In other words, any
additional muddiness factor has a category to which it be-
longs. Of course, there are many other ways to partition the



Table 1: A list of muddiness factors for a task

Category Factor Clean Muddy
Awareness Known Unknown

External Complexity Simple Complex
Env. Controlledness Controlled Uncontrolled

Variation Fixed Changing
Foreseeability Foreseeable Nonforeseeable
Rawness Symbolic Real sensor
Size Small Large
Background None Complex

Input Variation Simple Complex
Occlusion None Severe
Activeness Passive Active
Modality Simple Complex
Multi-modality Single Multiple
Size Small Large

Internal Representation Given Not given
Env. Observability Observable Unobservable

Imposability Imposable Nonimposable
Time coverage Simple Complex
Terminalness Low High

Output Size Small Large
Modality Simple Complex
Multimodality Single Multiple
Richness Low High

Goal Variability Fixed Variable
Availability Given Unknown
Conveying-mode Simple Complex

universe. Other partitions may not necessarily be as intuitive
and concise as the one defined here for our purpose.

Table 1 gives some major muddiness factors, grouped into
the above five categories. Let us examine the additional fac-
tors of muddiness.

External environment
Awareness means whether the programmer knows about the
external environment in which the agent works when he does
programming. Complexity measures how complex the ex-
ternal environment is. Controlledness refers to whether the
environment is controlled. Variation indicates whether the
environment is changing. Foreseeability means whether the
future environment is foreseeable or not.

Input
The background of input indicates whether the input in-
cludes information that is not related to the task at all. And,
if it does include background, how complex is the back-
ground. The variation of input refers to the complexity of
variation among inputs that require the same output. The
occlusion of input is another factor of muddiness. Presence
of occlusion in input makes a task muddier. The activeness
for input indicates whether the agent must actively acquire
input in order to perform the task and, if it must, how com-
plex the active acquisition actions are. The modality of input
measures the complexity of the input modality. The sensory
modality affects how muddy a task is. The task of accom-
plishing this using a laser range scanner, for example, is less

muddy than the one that uses two video cameras based on
stereo ranging. The multi-modality of input indicates how
many distinct sensory modalities are used.

Internal environment

It is difficult to understand the requirement of internal mem-
ory without considering a key concept called context. The
need of an internal environment is determined by the need of
representing a distinguishable context state, or often simply
called state. It is important to note, however, that the true
state of the agent is represented not only by the context state
(which uses short-term memory) but also the entire memory
(which includes the long-term memory). The behavior gen-
erated by the agent depends on not only the context state,
but also the long term memory. For consistency with the
literature, we call the context state simply state.

An AMD agent is a sequential processing agent. It pro-
cesses one input frame at a time and then produces one frame
of a motor control signal vector at a time. A sequential pro-
cessing agent needs a state to identify and distinguish con-
text. It corresponds to that part of memory that is recalled
and kept active for the current step. A state indicates the
current cognitive situation of the agent.

The size of internal environment is the measured value of
the size of the internal storage space needed. The represen-
tation of internal environment concerns whether the internal
representation is given or not from the task specification to
the task execution agent. It also characterizes how much in-
formation is given.

For this concept, the following distinctions are important:

(a) A human is the sole task executor.

(b) A machine is the sole task executor.

(c) A human and a machine are combined as the task execu-
tor: The programmer programs the machine which in turn
executes the task.

In cases (a) and (b), the task specification is directly con-
veyed to the sole task executor. In case (c), typically the task
specification is conveyed to the human who in turn designs a
representation for the machine. In the current AI field, case
(c) is the most prevailing, but we should not rule out case (b)
since it is a desirable goal of AMD.

The observability of internal environment means whether
the internal representation of the agent is observable by the
outside world. Closely related to the observability of inter-
nal environment is the imposability of internal environment.
The imposition here means that the human teacher directly
sets the value of the internal representation of the agent. The
representation of a human brain is not imposable through di-
rect brain manipulation, assuming that brain surgery is not
what we are interested in here. A parent can tell his child
what is the right thing to do. However, the parent cannot set
what a child actually thinks about.

The time coverage of internal state characterizes how
complex the required temporal coverage pattern is for the
context when the task is performed.



Output
The agent outputs its actions to its effectors. The terminal-
ness of output reflects how the output can be used directly
without human processing. While raw input means that it
does not require preprocessing by humans, terminal output
means that it does not require post-processing by humans.
The size of output is similar to the size of input. The modal-
ity of output determines how complex the output is. The
multi-modality of output indicates how many distinct effec-
tor modalities are used.

Goal
Each task has a goal. The variability of goal indicates
whether the goal of a task may change, and the degree of
change. The availability of goal means whether or not the
goal is given at the time of machine construction. The con-
veying mode refers to the mode in which the goal is specified
to the task executor. Is it explained via a keyboard in a com-
puter language or in a spoken natural language?

Finally, we have finished our examination for the reposi-
tory of our muddiness factors. The list of muddiness factors
in Table 1 is not meant to be exclusive. It is meant to provide
enough detail for discussion.

Composite muddiness
If we use n muddiness factors, we can construct an n-
dimensional muddiness frame, similar to what is in Fig. 2
for a 2-D case and Fig. 3 for a 3-D case. From the 25 mud-
diness factors in Table 1, we have a 25-D muddiness frame.

A caveat here is that the muddiness measures along dif-
ferent axes are very different in nature and, thus, it is hard to
compare different muddiness factors using their coordinates.
We should only use the muddiness frame in an intuitive and
qualitative sense. Another caveat is that the sense of mud-
diness created by a muddiness frame depends very much on
what kinds of muddiness factors are included in the muddi-
ness frame.

We would like to give a composite measure in terms of
how muddy a task really is. We denote the muddiness co-
ordinate of the ith row in Table 1 as mi. The value of mi

should never be smaller than 1: mi ≥ 1. The composite
muddiness of a task can be modeled by the product of all the
coordinates:

m = m1m2...mn =

n∏

i=1

mi, (2)

where m is the composite muddiness and n is the number
of muddiness axes adopted in a muddiness frame. Note
mi ≥ 1, for i = 1, 2, ..., n. This way of modeling the mud-
diness of a task is not meant to compare relative importance
of different muddiness factors on different axes of the mud-
diness frame.

Once the set of muddiness factors is determined, we can
visualize the muddiness of a given set of tasks. For example,
in a 2-D muddiness frame, we can plot an iso-muddiness
curve. It is a curve on which all the tasks in the muddi-
ness frame have the same muddiness. Fig. 4 plots three iso-
muddiness curves in a 2-D muddiness frame using two mud-
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Figure 4: Iso-muddiness curves in a 2-D muddiness frame.

diness factors mi and mj . In a 3-D muddiness frame, all
the tasks having the same composite muddiness value form
an iso-muddiness surface. In an n-dimensional muddiness
frame, they form a hyper-surface:

∏n

i=1
mi = c, where c

is the constant composite muddiness measure. Note that the
coordinate 1 can be used for the simplest useful case, since
mi ≥ 1.

It can be seen clearly why we did not define the composite
muddiness as the Euclidean distance from the position of a
given task to the origin of the muddiness frame. Our com-
posite muddiness takes into account the composite muddi-
ness of many axes, not just a single axis. A position that is
near an axis still corresponds to a relatively clean task. The
Euclidean distance from the origin does not have this prop-
erty.

Three Task Categories
Mastering the muddiness frame as a tool, we are ready to
examine whether a given task is muddy. To facilitate our
discussion, we divide tasks into three major categories 1, 2,
and 3.

Category 1: Clean tasks
What kinds of tasks are clean tasks? The list is extremely
long. Examples of tasks in Category 1 include: Word pro-
cessing, industrial control, digital communication, appliance
control, digital computation, and playing some (simulated)
games. If we locate these tasks in our 20-dimensional mud-
diness frame, they all lie around the origin of our muddiness
frame.

Category 2: Muddy tasks
The tasks in Category 2 are muddy but they are intensively
studied by researchers. This category contains tasks that
are currently considered as core subjects of artificial intel-
ligence. Some example tasks in this category are: Visual
object recognition, visual navigation, speech recognition,
text-based language translation, sign language recognition,
and text-based discourse. As an example, the following ta-
ble summarizes the visual navigation task in the DARPA
Grand Challenge 2005 (DARPA 2004), and the correspond-
ing characteristics of the AMD approach (Weng 2004). Of



Table 2: Muddiness factors of DARPA Grand Challenge

Cat. Factor Muddiness AMD
Awareness Unknown Env. open

Ext’l Complexity Complex Env. open
Env. Controlledness Partially controlled Env. open

Variation Changing Allowed
Foreseeability Nonforeseeable Env. open
Rawness Real sensor Suited
Size Large Suited
Background Complex Suited

Input Variation Complex Suited
Occlusion Present Exp. dependent
Activeness Moderate Suited
Modality Complex (video) Suited
Multimodality Multiple Suited
Size Large Suited

Int’l Representation Approach depend’t Not given
Env. Observability Approach depend’t Unobservable

Imposability Approach depend’t Not imposable
Time coverage Simple Exp. dependent
Terminalness High Suited

Output Size Moderate Suited
Modality Complex Suited
Multimodality Multiple Suited
Richness Low S.T.T.P.

Goal Variability Fixed S.T.T.P.
Availability Given S.T.T.P.
Convey-mode Simple S.T.T.P.

S.T.T.P.: Short-term (a few months) of training possible
Exp. dependent: Dependent on training experience

course, whether an example system of the AMD approach
will actually meet the Grand Challenge depends also on
many other factors, such as funding, design, implementa-
tion, computational resource, training experience, system re-
liability, etc.

Category 3: Very muddy tasks
The tasks in this category are so muddy that little has been
done for AI tasks in this category. Category 3 consists of
mostly tasks for which humans have not yet built a machine
to try. This category is of fundamental importance, since a
solution to the tasks in Category 3 probably holds the key
to the solutions to the tasks in Category 2. Some tasks in
Category 3 are: (1) Learn about new muddy subjects —
autonomously learn any possible muddy subjects including
those the machine maker does not know about. (2) Create
new knowledge of a high value — discover new facts about
science and produce creative works on any possible subjects
including those the machine maker does not know about, and
furthermore, those that we humans do not know about. The
term “any possible subjects” includes all the subjects that a
normal human can potentially learn in his lifetime, although
he may not necessarily actually learn all of them.

Intelligence Metrics
Based on the muddiness introduced above, I propose a mea-
sure of intelligence in terms of the capability of performing

muddy tasks.

Definition 1 A measure of intelligence for an agent is in
terms of the composite muddiness of the tasks that it can
perform. Collectively, the intelligence of an agent is mea-
sured in terms of the variety of muddy tasks it can carry out
and the muddiness of these tasks.

As somewhat expected, humans and higher animals (such
as dogs and cats) are much more intelligent than modern
computers, if we use the composite muddiness introduced
here as the measure. Using this measure, intelligence is not
something that is easy to demonstrate by current machines,
but the measure demonstrates the importance of the AI field
and directions for potential breakthroughs.

Conclusions
The composite muddiness of a task introduced here is a mea-
sure of the intelligence of the performer. With many muddi-
ness factors in a muddy task, it seems that AMD is necessary
to handle highly muddy tasks, due to its task-nonspecificity
(Weng 2004). A manually designed task-specific represen-
tation in a traditional approach restricts its capability to deal
with highly muddy tasks.

References
Cohen, P. R., and Howe, A. E. 1988. How evaluation
guides AI research. AI Magazine 9(4):35–43.
DARPA. 2004. DARPA grand challenge 2005: Rules.
Technical report, DARPA.
Franklin, S., and Graesser, A. 1997. Is it an agent, or just
a program?: A taxonomy for autonomous agents. In Intel-
ligent Agents III, Lecture Notes on Artificial Intelligence,
21–35. Berlin: Springer-Verlag.
Gardner, H. 1993. Multiple intelligences: The theory in
practice. New York: Basic Books.
Goleman, D. 1995. Emotional Intelligence. New York:
Bantam Books.
Meystel, A. M., and Messina, E. R., eds. 2000. Measuring
the Performance and Intelligence of Systems: Proceedings
of the 2000 PerMIS Workshop. Gaithersburg, MD: National
Institute of Standards and Technology.
Michie, D. 1993. Turing’s test and conscious thought.
Artificial Intelligence 60:1–22.
Norman, D. A. 1991. Approaches to the study of intelli-
gence. Artificial Intelligence 47:327–346.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ: Prentice-Hall,
2nd edition.
Tononi, G., and Edelman, G. M. 1998. Consciousness and
complexity. Science 282(5395):1846–1851.
Turing, A. M. 1950. Computing machinery and intelli-
gence. Mind 59:433–460.
Weng, J. 2004. Developmental robotics: Theory and ex-
periments. International Journal of Humanoid Robotics
1(2):199–235.


