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Abstract

This paper introduces a developmental approach to
learning the binding affordances of objects by a robot.
A behavior-based framework is used to ground the af-
fordance representation in the behavioral repertoire of
the robot. The affordances are learned during a be-
havioral babbling stage in which the robot randomly
chooses sequences of exploratory behaviors, applies
them to the objects, and detects invariants in the result-
ing set of observations. The invariants are calculated
relative to the robot’s body. The approach was imple-
mented and tested in a dynamics robot simulator.

Introduction
A simple object like a stick can be acted upon in various
ways. For example, a stick can be grasped, pushed, thrown,
broken, chewed, scratched, etc. It is still a mystery how
animals and humans learn these affordances and what are
the cognitive structures used to represent them.

The term affordance was first introduced by James Gib-
son (1979). Gibson defines affordances as “perceptual in-
variants” that are directly perceived by an organism and en-
able it to perform tasks (Gibson 1979). Gibson is not spe-
cific about the way in which affordances are learned, but he
suggests that some affordances are learned in infancy when
the child experiments with external objects. Furthermore,
he suggests that object affordances are learned in relation to
the capabilities of the learner’s body. For example, an object
might be graspable for an adult, but may not be graspable
for a child. Therefore, Gibson suggests that a child learns
“his scale of sizes as commensurate with his body, not with
a measuring stick” (Gibson 1979, p. 235).

The autonomous exploration of external objects is also
given a prominent role in Piaget’s theory of child develop-
ment (Piaget 1952). According to Piaget, intelligent behav-
iors are first developed in the process of interaction with ob-
jects. His theory divides the first two years of development
into six stages; the role that external objects play in the de-
velopment of the child increases with each additional stage.
Piaget even suggests that the mathematical abilities of hu-
mans have their origins in object interaction as children first
learn the concept of a number by counting external objects.
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This paper describes preliminary work toward a develop-
mental approach for learning the binding affordances of ob-
jects. The term binding is used to denote affordances that al-
low a robot to attach an object to its body so that the object’s
movements can be controlled reliably by the robot. Binding
affordances should be distinguished from output affordances
which allow a robot to use an object to act on another object,
i.e., to use the first object a as a tool (Stoytchev 2005).

The affordance representation described here uses a
behavior-based approach (Arkin 1998) to ground the affor-
dances of objects in the existing behavioral repertoire of the
robot. The affordances are learned during a behavioral bab-
bling stage in which the robot randomly chooses different
exploratory behaviors, applies them to the objects, and de-
tects regularities (or invariants) in the resulting set of ob-
servations. The observations are expressed relative to a
well known reference point: the robot’s body. The body
of the robot is represented using a robot body schema model
(Stoytchev 2003) which is also learned developmentally.

The computational model described here was inspired by
the theories of Gibson and Piaget. It should be noted, how-
ever, that it does not attempt to implement either of these the-
ories. Instead, it is intended for use by autonomous robots.
The model was implemented and tested in a dynamics robot
simulator.

Related Work
Gibson
Gibson divides environmental objects into two main cate-
gories: attached and detached. Attached objects are de-
fined as substances “partially or wholly surrounded by the
medium” which cannot be displaced without becoming de-
tached (Gibson 1979, p. 241). Detached objects, on the
other hand, are objects that can be displaced; they are
portable and afford carrying.

Detached objects must be comparable in size with the an-
imal under consideration in order to afford behavior. For
example, an object is graspable if it is approximately “hand
size” (Gibson 1979, p. 234) or has opposable surfaces the
distance between which is less than the span of the hand
(Gibson 1979, p. 133).

Gibson also seems to suggest that affordances are learned
by detecting perceptual invariants and linking them to the



behaviors that were executed while the invariant was per-
ceived. For example, an object affords throwing if it can
be grasped and moved away from one’s body with a swift
action of the hand and then letting it go. The perceptual in-
variant in this case is the shrinking of the visual angle of the
object as it is flying through the air. This highly interesting
“zoom” effect will draw the attention of the child (Gibson
1979, p. 235). The behavioral sequence that reliably re-
produces this invariant is a grasping behavior followed by a
throwing behavior.

The computational model described in this paper relies on
perceptual routines that detect invariants in the movements
of objects relative to the body of the robot. Sequences of ex-
ploratory behaviors that can reliably reproduce a perceptual
invariant are used to represent the affordances of objects.

Piaget

Piaget’s theory divides the first two years of human life into
six distinct stages (Piaget 1952). With each additional stage,
the behaviors of the child progress from simple to more in-
telligent ones. The role that external objects play in the de-
velopment of the child also increases with each additional
stage. A complete review of Piaget’s theory is beyond the
scope of this article. However, a brief summary of the first
three stages of development is provided below since our
method for learning object affordances resembles the sec-
ondary circular reactions (stage III) in Piaget’s theory.

Stage I: Reflex Structures (0-1 Month)
Piaget suggests that at birth children have no cognitive

structures. Instead they have reflex structures for sucking,
grasping, and crying. For example, newborn children close
their hands when their palms are touched. Similarly, chil-
dren start sucking any object that comes into contact with
their lips (Piaget 1952, p. 89).

Stage II: Primary Circular Reactions (1-4 Months)
The infant’s reflex structures are gradually transformed

into sensorimotor action schemas, which Piaget calls pri-
mary circular reactions. This happens after repeated use of
the reflex structures, which the baby would apply to any ob-
ject. For example, babies would grasp blankets, pillows, fin-
gers, etc. Stage II infants, however, are not concerned with
the objects around them and would not pay attention to the
effects of their actions on the external world. They would
execute an action even if it is not applied to any object. It
is not uncommon for them to open and close their hands in
mid-air. The repeated use of the action forms the primary
circular reaction.

Stage III: Secondary Circular Reactions (4-8 Months)
At the end of Stage II, infants are more capable of ex-

ploring their world. They can form associations between
their actions and the results produced in the external envi-
ronment. The child actively tries to reproduce or prolong
these results. Through this repetition the child discovers and
generalizes behavioral patterns that “produce and make in-
teresting sights last” (Piaget 1952, p. 171). Piaget calls these
behavioral patterns secondary circular reactions.

Related Work in Robotics and AI

Krotkov (Krotkov 1995) notes that relatively little robotics
research has been geared towards discovering external ob-
jects’ properties other than shape and position. Some of
the exploration methods employed by the robot in Krotkov’s
work use robot behaviors coupled with sensory routines to
discover object properties. For example, the “whack and
watch” method uses a wooden pendulum to strike an object
in order to estimate its mass and coefficient of sliding fric-
tion. The “hit and listen” method uses a blind person’s cane
to determine the acoustic properties of objects.

Fitzpatrick et al. (2003) used a similar approach to pro-
gram a robot to poke objects with its arm and learn the
rolling properties of the objects from the resulting displace-
ments. They used a single poking behavior parameterized
by four possible starting positions for the robot’s arm. The
robot learns a model of how each object slides (e.g., cars
tend to slide in the direction of their elongated axis while
balls can slide in any direction).

The most common form of binding is achieved through
grasping behaviors. The robotics literature offers numerous
examples of robotic grasping of objects (Cutkosky 1989;
Stansfield 1991; Pollard 1996). However, most of these
studies have approached the problem from an engineering
perspective rather than a developmental perspective. It is not
uncommon to find studies which attempt to find a formula
for the best grasp points before the robot has even touched
the object. While the merits of the two approaches can be
debated it is clear that living organisms learn the best way to
grasp objects through active trial and error.

Piaget’s theory has also inspired the research of Drescher
(1991) and Edelman (1987).

Behavior-Grounded Representation
of Binding Affordances

Justification

The related work on animal object exploration indicates that
animals use stereotyped exploratory behaviors when faced
with a new object (Power 2000; Lorenz 1996). These be-
haviors are species specific and may be genetically predeter-
mined. For some species of animals these exploratory be-
haviors include almost their entire behavioral repertoire: “A
young corvide bird, confronted with an object it has never
seen, runs through practically all of its behavioral patterns,
except social and sexual ones.” (Lorenz 1996, p. 44).

Thus, the properties of an object that an animal is likely
to learn are directly related to the behavioral and perceptual
repertoire of the animal. Furthermore, the learning of these
properties should be relatively easy since the only require-
ment is to perform sequences of exploratory behaviors and
observe their effects. Based on the results of these “exper-
iments” the animal builds an internal representation of the
object and the actions that it affords.

This paper takes a similar approach to learning the bind-
ing affordances of objects by a robot. A set of exploratory
behaviors is used to ground the affordances of all objects
to which the robot is exposed. Sequences of exploratory



behaviors that can reliably reproduce a perceptual invari-
ant are learned autonomously using a behavioral babbling
technique (essentially a random walk through the set of
exploratory behaviors). The perceptual invariants are ex-
pressed as visual functions that detect regularities in the
movements of objects relative to the body of the robot. For
example, the quality of grasps can be evaluated by shaking
the robot’s hand. A grasp is good if the grasped object moves
in the same way as the wrist. A grasp is not good if the ob-
ject’s movements (or lack of movements) are not be corre-
lated with the movements of the robot.

The main advantage of this approach is that objects’ affor-
dances are expressed in concrete terms (i.e., behaviors and
object movements relative to the robot’s body) that are di-
rectly available to the robot’s controller. Because of this
representational choice, the robot can autonomously learn
the affordances of new objects.

Furthermore, the robot can autonomously verify the affor-
dance representation of familiar objects in case some incon-
sistencies develop over time. For example, if a familiar ob-
ject becomes deformed it may no longer be graspable by the
robot. However, the robot can directly test the accuracy of
its representation by executing the same set of exploratory
behaviors that was used in the past. If any inconsistencies
are detected in the resulting observations they can be used to
update the object’s representation. Thus, the accuracy of the
representation can be directly tested by the robot.

Theoretical Formulation
The previous sub-section presented a justification for the
behavior-grounded affordance representation. This section
formulates these ideas using the following notation.

Let the body of the robot be represented as a set B of
k rigid bodies, where B = {B1, B2, . . . , Bk}. The bodies
are connected with a set of joints J which impose limits on
their movements. A set F = {F1, F2, . . . , Fk} of Cartesian
frames is also defined such that every rigid body Bi has an
associated frame Fi.

Also, let there be a set L={L1, L2, . . ., Ll} of l distinct
body locations that are distributed along the surface of the
robot’s body. Each body location Li has an associated vi-
sual signature Si that can be identified by the robot’s vi-
sion system. Furthermore, each body location is associated
with one coordinate frame as given by the many-to-one map-
ping function π : L→F . For each body frame Fi there is a
function Ci which converts camera-centric coordinates into
frame Fi coordinates. For example, Ci(Sj) → [X,Y, Z]Fi

returns the coordinates of the visual signature Sj expressed
in frame Fi coordinates.

Distinct locations are also defined for environmental ob-
jects. These locations represent local features of the object
(e.g., corners) that can be identified easily. Let each object
have at least w distinct locations Lo = {Lo

1, Lo
2, . . ., Lo

w}.
Let each location Lo

j have a visual signature So
j . The posi-

tions of these locations can be tracked by the robot’s vision
system and their coordinates can be expressed in any body
frame Fi using the conversion functions defined above, i.e.,
Ci(S

o
j ) → [X,Y, Z]Fi

. Furthermore, let the identity of each
environmental object be determined by a set of perceptual

features f1, f2, . . ., fh. It is assumed that these features can
be identified by the robot’s vision system and can be used
for object recognition.

The robot’s perceptual routines continuously provide a
stream of observations in the form of an observation vec-
tor O(t) = [o1(t), o2(t), . . . , on(t)]. The observation vec-
tor contains information about the current positions of the
robot’s body locations, the positions of the object’s loca-
tions, and information about the features of the object.

Let β1, β2, . . . , βe be the set of exploratory behaviors
available to the robot. Each behavior, has one or more pa-
rameters that modify its outcome. Let the parameters for
behavior βi be given as a real-valued parameter vector Pi =
[pi

1, p
i
2, . . . p

i
q(i)], where q(i) is the number of parameters for

this behavior. The behaviors, and their parameters, could
be learned by imitation, programmed manually, or learned
autonomously by the robot. For the purposes of this pa-
per, however, the issue of how these behaviors are selected
and/or learned will be ignored.

A set of invariant functions I1, I2, . . ., Ir is also de-
fined. These functions take as parameters the observation se-
quences generated by individual behaviors and try to detect
regularities (or invariants) in the sensory data. The invariant
functions relate the movements of the object’s locations to
the movements of the robot’s body locations evaluated in a
specific body frame.

For example, if behavior βi starts at time t and ends at
time t + τ it will generate the following sequence of obser-
vations: O(t),O(t + 1), . . . ,O(t + τ). The value of invari-
ant function Ii calculated in frame Fj will be denoted with
Ii,j = Ii(Cj(O(t)), Cj(O(t + 1)), . . . , Cj(O(t + τ))). In
other words, all elements of the observation vector are con-
verted to coordinates in frame Fj before the invariant func-
tion is calculated. The invariant functions return a value in
the interval [0,∞). A value of 0 means that a perfect syn-
chrony was observed between the movements of the robot’s
body locations and the movements of the object’s locations.
For each invariant function Ii a binary valued function Γi is
also defined which outputs 1 if the value of the invariant is
below a given threshold εi and 0 otherwise.

With this notation in mind, the task of learning the binding
affordances of an object can be reduced to the task of popu-
lating the values of the following Affordance Table (see be-
low). Where s1, . . . , su are behavioral test sequences com-
posed of exploratory behaviors as described below.

Behavioral Frame 1 . . . Frame k
Sequence Invariants . . . Invariants

s1 I1,1 . . . Ir,1 . . . I1,k . . . Ir,k

s2 I1,1 . . . Ir,1 . . . I1,k . . . Ir,k

. . . . . . . . . . . . . . . . . . . . . . . .

su I1,1 . . . Ir,1 . . . I1,k . . . Ir,k

The robot keeps a history of the executed behaviors and
their parameters. Whenever it detects an invariant it queries
the history and generates test sequences of increasing length.
These sequences are then applied to the object to test which



ones can reproduce the invariant. More specifically, let
h be an entry in the history (containing both a behavior
and its parameters). Furthermore, let the current history
be H = h0, . . . , hi−3, hi−2, hi−1, hi. Where h0 is a be-
havior that puts the robot in its start position (i.e., it resets
the robot to a known configuration). If an invariant is de-
tected after hi is complete then the robot’s controller gen-
erates the following test sequences: (h0, hi), (h0, hi−1, hi),
(h0, hi−2, hi−1, hi), (h0, hi−3, hi−2, hi−1, hi), etc.

The shortest test sequence that reproduces the invariant is
included in the affordance table. The invariant is considered
reproduced if the last behavior in the test sequence generates
at least one high interest reading (i.e., Γi = 1) for any of the
invariant functions in any of the body frames. Also, the last
behavior should have changed the position of the object as
observed in camera coordinates.

Experimental Environment
Dynamics Simulator
All experiments were performed using a dynamics robot
simulator developed in house. All objects in the simula-
tor are modeled as rigid bodies. The bodies describing the
robot are connected with joints which impose limits on their
movement. The simulator calculates the friction and colli-
sion forces between the simulated objects and updates their
positions and velocities at regular intervals (every 0.005 sec-
onds). The dynamics are calculated using the Open Dynam-
ics Engine library v 0.035 (Smith 2003). All experiments
were run on a Pentium 4 machine (2.4 GHz, 512 MB RAM),
running RedHat Linux 9.0.

Robot
The robot is a simulated model of a CRS+ A251 manipu-
lator arm (see Figure 1). The robot has 5 degrees of free-
dom (waist translate, waist roll, shoulder pitch, elbow pitch,
wrist pitch, wrist roll) plus a gripper. A simulated camera
is mounted above the robot’s working area. Vision routines
are simulated by reading the positions of the objects from
the internal data structures of the simulator.

Figure 1: The simulated CRS+ A251 manipulator used in
the experiments holding a stick object.

The robot has 23 markers located on its body that serve
as the body locations L. Figure 2 shows a close up of the
arm and wrist and the positions of some of the markers. The

robot also has 5 simulated tactile sensors located on its grip-
per. There are two touch sensors per finger (inner and outer
surface). The fifth sensor is located on the surface of the
wrist between the two fingers (See Figure 2).

Figure 2: A closeup of the robot’s arm and wrist. Red
squares show the locations of some of the body markers.
Green rectangles show the locations of the tactile sensors.

Objects
Seven different objects were used in the experiments: stick,
spindle, mallet, dumbbell, beam, H-frame, and π-frame (see
Figure 3). The objects have different shapes which makes
them easier or harder to grasp. For example, the dumbbell
can be grasped only in its middle section while the beam
object is too thick to fit in the robot’s gripper. All objects
are color coded so they can be uniquely identified by the
robot. Their colors are included in the observation vector
(see below).

Figure 3: The seven objects used in the experiments. From
left to right: stick, spindle, mallet, dumbbell, beam, H-
frame, and π-frame.

Exploratory Behaviors
All behaviors used here were encoded manually from a
library of motor schemas and perceptual triggers (Arkin
1998) developed for this specific robot. The behaviors re-
sult in different arm movement patterns as described below.

Id Exploratory Behavior Parameters
β0 rotate-arm relative angle
β1 rotate-wrist relative angle
β2 pitch-wrist relative angle
β3 touch-object relative offset
β4 lift-arm offset from table
β5 lower-arm offset from table
β6 open-gripper
β7 close-gripper

The first three behaviors perform rotational movements
with the arm and wrist respectively: rotate-arm moves the



arm left or right; shake-wrist moves only the wrist left or
right; and pitch-wrist moves only the wrist up or down. Each
of these behaviors has one parameters which determines the
direction of rotation and the magnitude of the movement in
that direction. Two different values were used for the angle
parameter : +20 and −20 degrees.

The touch-object behavior moves the wrist of the robot
until it comes into contact with a specific location on the ob-
ject. The position of this location is specified with an offset
which gives the coordinates of a point along the major axis
of the object. Three offset values were used (-10cm, 0cm,
and +10cm) which correspond to the lower, middle, and up-
per part of the object’s main axis.

The lift-arm and lower-arm behaviors move the arm of
the robot vertically up and down respectively. They have
only one parameter that specifies the end offset of the wrist
relative to the table. The parameter for lift-arm has only one
value of +20cm; lower-arm also has one value of 0cm.

The last two behaviors simply open and close the gripper.
They have no parameters, but they check the values of the
tactile sensors to determine when to stop the movements of
the gripper if it comes into a contact with an object. Grasp-
ing is achieved through the friction force calculated by the
simulator between the closed gripper and the object. There-
fore, objects can fall off if they are not grasped properly.
The last two objects shown in Figure 3 can be attached to
the robot by opening the griper while it is inserted between
the two vertical bars (i.e., this is a different form of binding).

Observation Vector

The observation vector has 55 real-value components as
shown in the table below. The first 23 components hold the
positions of the robot’s body markers in camera coordinates.
The next five elements represent the activation values of the
five touch sensors. Elements 29,30, and 31 hold the RBG
values of the object’s color which are used to uniquely iden-
tify each object. The last 24 components give the positions
of the object’s corners in camera coordinates. The corners
are used as object locations because they are easy to iden-
tify. Since different objects have different number of corners
(between 8 and 24 for the objects shown in Figure 3) the last
entries of the observation vector may be marked as unused.

Observation Meaning
o1 − o23 X,Y,Z positions of body locations
o24 − o28 grasp sensor activation values
o29 − o31 R,G,B color components of the object
o32 − o55 X,Y,Z positions of object locations

Body Frames and Invariant Function

Two body frames were defined for the robot. The first frame
is attached to its arm. The second frame is attached to its
wrist. Each frame is uniquely specified by three markers
that always remain at equal distances relative to each other.
The positions of the markers can be used to form three or-
thonormal vectors which define a frame. A Gram-Schmidt
process was used to calculate the basis vectors.

Only one invariant function was used. It returns the sum
of the standard deviations of the positions of all object cor-
ners observed during the last executed behavior. This sum is
normalized by the number of corners so objects with large
number of corners don’t get artificially high scores, i.e.,

I1 =
1

c

32+c−1∑

i=32

stdev(oi(t), oi(t + 1), . . . , oi(t + τ))

where c is the number of object corners. An empirically es-
timated threshold value εi=2cm was used in all Γi functions.

Experimental Evaluation
For each of the seven objects shown in Figure 3 a separate
learning trial was conducted. During the learning trials the
robot was allowed to freely explore the objects. The explo-
ration consists of trying different behaviors, observing their
results, and filling up the affordance table using the history
method described above. The learning trials were limited
to thirty minutes of simulation time per object. The initial
placement of the objects was random, but they were always
placed within the robot’s sphere of reach. If an object was
pushed out of reach during its exploration then the simula-
tion was restarted with a new random position.

The data from each learning trial was sufficient to popu-
late the entries of the affordance table for each object. The
table below shows the data gathered for the dumbbell ob-
ject in a typical run. The behavior ids are the same as in the
previous section. The first behavior in each sequence (not
shown) is a reset behavior which puts the robot in its start
position and also drops any objects that the robot might be
holding. The maximum sequence length was set to four.

Learned Sequences (Dumbbell) I1,1 I1,2

β3(0cm) β7() β0(+20◦) 0.1 0.1
β3(0cm) β6() β7() β4(+20cm) 1.8 0.2
β3(0cm) β2(−20◦) β7() β0(+20◦) 0.1 0.1
β2(−20◦) β3(0cm) β5(0cm) β0(−20◦) 0.7 0.6

As the table shows, the touch-object and close-gripper be-
haviors (β3 and β7 respectively) appear very often in the
learned sequences. Based on this frequency information
these behaviors can be automatically selected as a prereq-
uisite for binding with the object (however, this was not per-
formed in this set of experiments). The sequences learned
for the H-frame and the π-frame used the open-gripper be-
havior to achieve the binding.

Learned Sequences (π-frame) I1,1 I1,2

β3(−10cm) β6() β0(−20◦) 0.4 0.4
β3(−10cm) β2(+20◦) β6() β0(+20◦) 0.9 0.9
β3(−10cm) β1(−20◦) β6() β0(−20◦) 1.3 0.9

Similar results were obtained for the other objects. It was
somewhat surprising to find that the affordance table for the
beam object was not empty. The beam is the only object
that does not fit inside the robot’s gripper. Nevertheless, the



robot learned to slide it sideways by sticking its gripper into
the object and rotating its arm.

Learned Sequences (Beam) I1,1 I1,2

β6() β3(0cm) β0(−20◦) 1.7 1.7
β7() β3(0cm) β0(+20◦) 1.5 1.5

The tables also show that the observed object variations in
body frame 2 (the one attached to the wrist) are usually equal
or smaller than the variations in frame 1 (the one attached to
the arm). This information can be exploited to compress the
affordance table by considering only the wrist frame in any
future object explorations.

It should also be noted that all seven objects are relatively
thin and can be grasped sideways by the robot if they are
first rotated by 90 degrees. However, the robot lacks the
required exploratory behavior that can perform such a rota-
tion. Therefore, it could not discover these other ways for
binding with the objects. Adding the capability to learn new
exploratory behaviors can resolve this problem.

MPEG movies from the experiments are available at:
(http://www.cc.gatech.edu/˜saho/tooluse/DevRob2005).

Conclusions and Future Work
This paper introduced a novel approach for developmental
learning of the binding affordances of objects by a robot.
A behavior-based approach was used to ground the af-
fordance representation in the behavioral repertoire of the
robot. More specifically, the affordances of different ob-
jects were represented in terms of a set of exploratory be-
haviors and their observed effects. Simulation experiments
were conducted in a dynamics robot simulator. Our initial
experiments suggest that the behavior-grounded approach
can be used by a robot to autonomously learn the binding
affordances of different objects.

The affordances are learned during a behavioral babbling
stage in which the robot randomly chooses sequences of ex-
ploratory behaviors, applies them to the objects, and detects
regularities (or invariants) in the resulting set of observa-
tions. Only sequences that reliably reproduce an invariant
are used to represent the affordances. The invariants are cal-
culated relative to the robot’s body.

A shortcoming of the behavior-grounded approach is that
there are object affordances that are unlikely to be discov-
ered since the required exploratory behavior is not available
to the robot. This problem has also been observed in an-
imals, e.g., macaque monkeys have significant difficulties
learning to push an object away from their bodies because
this movement is never performed in their normal daily rou-
tines (Ishibashi, Hihara, & Iriki 2000). This problem can
be resolved, however, if the ability to learn new exploratory
behaviors is added.

Future research can extend this approach in several ways.
First, the number of invariant functions should be increased
so that the robot can detect additional properties of the ob-
jects. Second, interpolation between behavioral parame-
ters can be used to quickly come up with new variations of
the exploratory behaviors (e.g., finding intermediate grasp

points between the three ones used here). Third, generaliza-
tion techniques can be used to learn the affordances of a new
object by relating them to the affordances of familiar objects.
And finally, the simulation results should be replicated on a
real robot.
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