
Evolving AI:
Position paper in Developmental Robotics

Pentti Kanerva
Redwood Neuroscience Institute

Menlo Park, California
pkanerva@rni.org

January 2005

Abstract

This paper addresses the difficulty inherent in our un-
derstanding of our own intelligence because we have no
conscious access to the underlying mechanisms. How-
ever, we know enough about human mental processes to
create conditions favorable for discovery. How to apply
this knowledge toward the discovery of the underlying
mechanisms and processes is discussed.

Introduction
From its inception, AI has had an ambitious goal of build-
ing machines that simulate human intelligence as manifested
in our use of language, forming of abstractions and con-
cepts, solving problems, and learning. I will call this kind
of human-level AI the high goal of AI. In fifty years of re-
search the task has proven extremely demanding, and the
goal continues to elude us.

Achieving the high goal amounts to nothing less than un-
derstanding how the human body and mind work. This view
challenges a popular tenet of AI that the actual mechanisms
don’t matter so long as they reproduce the sought-after be-
havior. However, they do matter when the target is ill-defined
and the goal keeps shifting. Not that human body and mind,
or behavior, are radically changing, but that our appreciation
of them changes as we learn about human behavior and try
to simulate it. Thus built into our quest is a dynamic that
drives us toward a more and more complete understanding
of the human body and mind, because it is unlikely that a
very different architecture would produce the same behav-
ior, and even if it did, how would we find it?

In this paper I will examine a major difficulty posed by
our quest and will suggest a path of inquiry to overcome it
or, rather, to circumvent it. It turns out that Developmental
Robotics lies squarely on that path.

The difficulty comes from deep self-involvement, as sug-
gested above. Since our quest is defined by what we humans
can do, having an objective view of ourselves is crucial, but
it is also very tricky. It is reminiscent of our understanding
of our place in the universe when our immediate experience
places us at its stationary center. Gradually we came to ac-
cept the sun-centered view of the nearby universe and the in-
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significance of the solar system in all of it, and only because
they explained better the accumulating data. But even in this
picture we are at the center, as we are the ones to whom the
data are to be explained, and in terms that somehow make
sense to us. A big part of the difficulty, therefore, is in assur-
ing that our concepts are adequate for the task. How to make
sure that our concepts are adequate for describing human in-
telligence?

Evolution
There appears to be no way for us to have an entirely ob-
jective view of ourselves and hence of the high goal of AI.
The next best thing is to remove ourselves as far from the
center as possible and to attack the problem indirectly. As a
framework for this approach, I propose the evolution of in-
telligence in the animal world. Evolution recommends itself
by being the only process that has actually produced the kind
of intelligence we are interested in. Besides, a living record
of the evolution is all around us in the form of animals at all
levels of intelligence. We can look into that record and let it
guide our search.

The first things to note is that we are interested in intel-
ligence that is attributed to brains (and nervous systems),
and that they process information. So the brain is a kind of
a computer that runs the body and accounts for the mind,
so that modeling intelligence on computers seems justified.
The adaptability of brains is a major evolutionary asset that
at once also becomes an engine of evolution.

What stands out in the evolutionary record? Most notably,
brains become larger and nervous system more complex, and
new brain structures become prominent. This matches our
intuition about computers—bigger is better—including the
notion that with a computer that is large and fast enough we
should be able to simulate any level of human intelligence.
So far we are aligned with the traditions of AI. But we can
learn much more from real brains and from the bodies they
inhabit. I will examine features of animals that seem highly
relevant to computational modeling of intelligence.

Sensor–Motor–World Loop
Evolution takes place in a context, which we refer to as the
environment or the world. The world is a complex conglom-
eration of resources to sustain life and threats to survival. Its



complexity exceeds any individual’s capacity to understand
it fully, but the more an individual knows about the world,
the better its changes of survival are—more is better.

Conspicuous in animals is the prevalence of sensors,
which, together with the actuators (motors, muscles), cou-
ple the animal to the world. From an information-processing
point of view, early evolution was marked by the profusion
of sensors that permeate the body and respond to varying
conditions of the world and of the animal itself. An animal’s
sensory neurons can number in the millions and they can re-
spond to light, sound, temperature, pressure, stretch, vibra-
tion, electric and magnetic fields, chemicals, body position,
body movement, and covert conditions of the body itself. It
appears almost as if the body were there merely to provide a
platform for a huge array of sensors! The brain’s world then
is this enormous amount of data constantly pouring in.

The brain evolved to deal with this massive input and to
convert it into beneficial action, where also the action is de-
fined as the activity over large numbers of neurons, ones
that drive muscles and glands. Evolution worked on this
design—on converting elaborate patterns of input into ben-
eficial patterns of output in the context of the world—for
several hundreds of millions of years before inventing the
design that gave us symbolic thought and language, which
by comparison is a very recent invention. As a rule of evo-
lution, a new design is an elaboration of the old and relies
heavily on it. We can therefore expect that our symbolic
abilities rely heavily on our presymbolic abilities—not to be
confused with subsymbolic—that we share with all animals.

By distinguishing between presymbolic and subsymbolic
I want to draw attention to the ability of animals to compre-
hend the world—their being able to deal with it—without a
system of abstract symbols that obey compositional syntax
and semantics. Nevertheless, the brains of presymbolic ani-
mals form internal representations of the world and operate,
or compute, with the representations. Missing in presym-
bolic animals is the ability to form arbitrary mappings be-
tween internal representations on the fly. The word subsym-
bolic would then refer to neural/connectionist realization of
such mappings, making symbolic systems and language pos-
sible.

Handling of sensory input that is commensurate with the
sensory input in animals, and converting it into beneficial
action without resort to language-like symbol processing, is
a major challenge to AI and robot design. To appreciate the
import of this challenge, let us review what presymbolic an-
imals can do. Assuming that symbolic language developed
in primates, we can look at other mammals and birds. They
learn from experience and improve by practice, they have a
sense of what they can and cannot do, they remember places
and things over long periods of time and act accordingly—
they appear capable of imagining and planning—they com-
municate, they learn a social structure and their place in it,
they learn by imitation, they learn rudimentary use of tools,
they can be taught to obey and to perform tricks. Presym-
bolic animals are complete functioning autonomous systems
that lack the ability to tell stories of what they have experi-
enced or are doing.

There is a sense in which we humans understand the

world and know what we are doing that is like how a dog un-
derstands the world and knows what it is doing. We should
try to build that kind of foundation into our AI systems and
robots first, and then base symbolic manipulation and lan-
guage on it. My hunch is that this would go a long way to-
ward solving problems in computational linguistics, for ex-
ample, and could resolve ambiguity that now haunts natural-
language processing. In other words, ambiguity would be re-
solved outside language and language-like systems such as
symbolic logic, by relying on a more visceral understanding
of the world.

Circuits and Representation
The brain is organized in different kinds of circuits, appar-
ently to serve different kinds of functions. A circuit can be
identified by its relative uniformity in terms of types of neu-
rons and their connections. Remarkable about the circuits
is their size. Their neurons number in the thousands to mil-
lions to billions, each with multiple—into the thousands—
synapses that are like nature’s transistors. Furthermore, even
very simple physical and mental activity involves the activ-
ity of large numbers of neurons distributed over multiple cir-
cuits.

Such numbers are staggering, and they must be so for a
reason. Among other things, they suggest that intelligence
in the animal world relies on very high-dimensional, dis-
tributed representation. We already have some understand-
ing of such representations: they allow robust systems to be
built from unreliable components that are wired according
to a general plan. Brains that differ in their details can nev-
ertheless be equivalent, and the death of individual neurons
does not drastically affect behavior. But these are merely su-
perficial observations about brains. We need to know much
more about brainlike representations. Some studies along
these lines have been made, but the area deserves extensive
in-depth research (e.g., Olshausen & Field 2004).

Neuroscience and Robotics
Neuroscience obviously studies neural circuits, and the area
most closely associated with robotics is called systems neu-
roscience. It relates behavior to neural architecture and is a
rich source of information on neuroanatomy, neural devel-
opment, and the relation of neural structures to the functions
they control (e.g., Swanson 2000). However, from an engi-
neering point of view, the neuroscientists’ notion of compu-
tation is incomplete. It is expressed in terms such as infor-
mation flow, signal relay, facilitation, excitation, inhibition,
spike train, membrane potential, synapse, and neurotrans-
mitter. In other words, either very general or very specific,
whereas key elements of computer engineering fall in be-
tween. They deal with codes and with circuits for encod-
ing, decoding, and processing of information in terms of the
codes. Computer science could make a major contribution
to systems neuroscience by interpreting the neural structures
in terms of circuits, codes, and information processing based
on the codes, and systems neuroscience in turn could instruct
AI and robotics in the organization and development of au-
tonomous systems.



Computation Implied by the Above
Very high dimensionality of the representation—in the thou-
sands to millions—appears to be crucial to the brain’s com-
puting. The exact nature of the dimensions seems to matter
less than their number because important properties of high-
dimensional spaces are evident even when the dimensions
are binary. Conventional computers, by contrast, are built for
low-dimensional entities: the dimensionality of the address
space is usually less than 30, and the word size is usually
somewhere between 8 and 64. High-dimensional entities can
of course be simulated on conventional computers, although
such simulations can be time-consuming.

Computing with high-dimensional distributed representa-
tions is bound to be very different from traditional numeric
and symbolic computing. Quantities are inexact, patterns of
input never repeat exactly, and memory works by associa-
tion. Mathematically this means that the brain forms equiva-
lence classes from its inputs and then operate on the classes,
in addition to the immediate sensory data. For example, a
specific person is an equivalence class over sensory inputs,
and a human being is an equivalence class comprising indi-
vidual persons. The brain’s ability to generalize is partly due
to the dimensionality of the representation.

Research into brainlike representations has exploited both
the geometry and the algebra of high-dimensional spaces.
Artificial neural nets and associative memory (e.g., Ander-
son & Rosenfeld 1988), semantic vectors such as in La-
tent Semantic Analysis (e.g., Landauer & Dumais 1997),
and concept lattices (e.g., Widdows 2004) depend on the
geometry; that is, they depend on the distances between,
and the alignments of, points that represent meaning. Noise-
tolerance and robustness of neural systems are direct re-
sults of the geometry. Holographic Reduced Representation
(Plate 2003), on the other hand, relies on the algebra, most
notably on multiplication operators that map a configuration
of points from one part of the space to another and thereby
potentially to new meanings. This allows symbolic composi-
tion to be realized in brainlike distributed representation and
it could also provide a mechanism for analogy, which plays
a key role in human intelligence.

The mathematical properties of high-dimensional spaces
are rich and subtle, and much remains to be learned about
them and their use for computing. They are likely to give
rise to a new theory of computing that emphasizes represen-
tation and is concerned with efficiency—finding solutions
fast enough that are good enough. The new theory would
have a major impact on the design of computers for AI and
robotics. If the reader were to take with them only one lesson
from this paper, I would like it to be the need to discover the
secrets of very high-dimensional distributed representations,
of computing with very large patterns (Kanerva et al. 2001).

Relating to Developmental Robotics
Traditional AI strives to mimic (and exceed) human intel-
ligence by whatever means possible. I call this behavioral
or functional cloning and use the word cloning to empha-
size the fact that human intelligence serves as the model,
it provides the target. How we define intelligence and what

we expect intelligent systems to do is drawn fundamentally
from how we view ourselves.

Developmental robotics takes the human (and animal)
model of intelligence closer to heart by modeling itself after
human cognitive development, one reasons being that the
more traditional symbolic AI has great difficulty program-
ming general-purpose systems that deal with open-ended
situations. For example, language understanding may never
yield to the purely symbolic approach—nor purely nonsym-
bolic either.

Quoting from the symposium announcement, devel-
opmental robotics “focuses on the autonomous self-
organization of general-purpose, task-nonspecific control
systems.” This too is close to functional cloning because
it looks to duplicate overt aspects of human (and animal)
intelligence—namely, how such intelligence comes to be
and what it encompasses. The shift from the traditional AI
is toward autonomous self-organization, because that is how
human intelligence develops. There is also a trend toward
structural cloning, as the robots incorporate more and more
parts that are motivated by real nervous systems (Weng &
Zhang 2002).

Developmental robotics aims at coping with unantici-
pated challenges of the environment. An agent—a physi-
cal body—interacts with its environment and improves its
behavior by building an internal model of the interaction.
The patterns received by the agent’s sensors and the patterns
driving the agent’s effectors are the language of interaction,
just as they are with animals coping in the world, or with any
breed of robots. However, the makeup of the internal model
makes a difference. In traditional robots it is programmed
for specific tasks based on the designer’s understanding of
the problem. The resulting internal models are mostly logi-
cal and are naturally programmed in symbol-processing lan-
guages such as Lisp. In developmental robots one task looms
over all others, namely, open-ended learning. The internal
models are mostly statistical and hence prime candidates for
artificial neural networks. The internal models of animals,
naturally, are realized by neural networks.

The makeup of the internal model is crucial, but it is also
the least understood part of human and animal behavior. For
its resolution I advocate a form of structural cloning: look
for ideas in structures that work and try to interpret them.
Brains have a lot of organization that our neural-net models
lack. Obviously very different circuits perform very different
tasks, and without a proper circuit a task is unlearnable. We
may be able to teach a dog a set of commands, but we can-
not do it by describing the desired action in words. When
the circuits that allow language to develop are missing, no
amount of training will make up for it. Ultimately we want
to understand the algorithms realized by the circuits and then
consider different computational realizations of them.

Preparing for a Solution: Education
I will return to a topic that I began with, the difficulty of
grasping human intelligence because of self-involvement—
the difficulty of understanding that with which we under-
stand. Since we have no direct access to the underlying



mechanisms by introspection, we need to approach the prob-
lem indirectly. This brings forth a most intriguing issue: the
better we understand the mind’s workings, the better we will
be able to solve difficult problems, including how the mind
works in terms of its underlying mechanisms. That is to say,
we can deliberately set up conditions that promote discov-
ery. That is the ultimate in bootstrapping!

We already know enough of the psychology of human
learning to take us onto this path. Discovery has a logic of its
own that cannot be forced but can be facilitated. The key is
in preparation. The mind needs to be prepared to recognize
a solution if and when presented with one. It will then make
its leap even if don’t know how.

Preparation means becoming thoroughly familiar with—
immersed in—both the problem and a broad range of topics
that could contribute to the solution. The problem is man-
ifested in human and animal behavior, and a host of dis-
ciplines bears on the solution, from biology all the way to
philosophy.

Animal evolution gives us countless examples of intelli-
gence. To be guided by it, we need a broad understanding
of biology and neuroscience. Appreciating the magnitude of
neural circuits is essential to discovering their algorithms.

On the behavioral and cognitive side, we need to be ed-
ucated in psychology, psychophysics, and linguistics. We
need to know what cognitive systems can do, how they fail,
and how they can be fooled. As manifestations of the un-
derlying mechanisms, behaviors are a prime source of chal-
lenges and checks to our exploration.

Education in computer science with its branches of AI and
robotics prepare us to think in terms of algorithms. It also
gives us a sense of computation as something to be quanti-
fied, something that you may need more of or less of, which
translates into some tasks being difficult and others easy.
Furthermore, computer simulation is an indispensable tool
of exploration.

Finally, two areas of utmost importance are mathematics
and engineering. The issues of representation and computa-
tion with very high-dimensional vectors are deeply mathe-
matical, and some of the necessary math may not even have
been invented yet. The field needs mathematicians who can
appreciate all the educational needs as outlined above be-
cause, in the end, somebody needs to make a connection
between an observed set of behaviors and a mathematical
system that could explain them. That is how we put the sun
at the center of the nearby universe. Without a thorough fa-
miliarity with abstract mathematical spaces, it will be im-
possible for anybody to see the connections and to draw the
proper analogies—or for any mind to make the necessary
mental leaps.

Engineering plays a special role by making things real.
However, its import goes far beyond the practical, for it pro-
vides the ultimate test of our understanding. Developmental
robotics is motivated to a large part by the intellectual rigor
that engineering imposes on the exploration.

And let us not overlook the value of sound philosophy:
we need a conceptual framework that is adequate for the
task. The evolution of intelligence can help there, too. We
can first develop concepts for describing the intelligence of

primitive animals, in terms that are meaningful at that level,
and then bootstrap to concepts for higher and higher levels
of intelligence. Thus, tracking the evolution of intelligence
in the animal world may well lead us to the high goal of AI.
I call it the low road to the high goal.

Human and animal intelligence are properties of physical
systems operating in the physical world and therefore should
be capable of being built into artificial systems within the
limits of existing technology. Progress in electronics manu-
facturing points to a future when the technology no longer is
the limiting factor, whereas our understanding of the mech-
anisms that underly intelligence could still be. The point of
this paper is that we can, in fact, organize education and de-
vise a research strategy that lets us work out also the needed
theory. Developmental robotics is a very natural component
of that strategy.
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