
CS380 Information Retrieval

HW 4 / Group Project 2

Dates:
Topic selection: March 20
Report due April 8
Presentations to be made: April 6 and April 8 (?)

Groups:
Given our virtual status, keeping the groups from project 1 is OK.
However rearrangement is also fine.

General Instructions:
Unlike the first group project where the number of groups working on
particular topics was limited, groups are free to choose topics without
restriction. That said, unique topics and presentations might be
expected to, on average, receive a slightly higher grade simply because
they are not in direct competition with others.

Topics:
1. Web Crawling. Write a web crawler that crawls the Bryn Mawr and

Haverford domains. The crawler should not crawl pages outside of
these domains. The crawler should retrieve essentially 100% of the
documents within these domains. The crawler should retrieve any
page at most twice during crawling. (The crawler should also respect
any robot restrictions.) One result of the crawl must be a list of every
page (URL) found during the crawl along with its size and the date
that the page last changed (as given in the page headers). This list if
to be submitted electronically, NOT on paper. From all groups writing
crawlers I will assemble a list of all the pages found. Part of the
crawler grade will be based on the percentage of pages a specific
crawler found in the merged list. Within the web crawling space you
should choose any of the following specialities, or define your own
specialty:
1. Speed. Do everything you can to optimize the rate a which pages

are crawled. Multithreading will be necessary. You will probably
want to run on more than one computer. The presentation and
paper should focus on how the crawler needed to be adapted make
it faster.

2. Topic direction. Order the crawl based on some desired topic. The
crawl should still be complete, but the order of crawl should be
different. The presentation and paper should focus on what
adjustment the crawler needed to be topic directed and then on
how the topic direction changed the ordering of the crawl. You will
likely need to do at least 2 complete crawls, with 2 different
topics. You will need to track the exactly order in which pages were
crawled so you can compare ordering between the crawls.

3. Page-rank direction. Order the crawl based on the page rank
estimate for the page. This estimate should evolve while the crawl
is in progress. That is, do not do a complete crawl, then calculate
the page rank for each page, then recrawl with a page ranks
calculated from the first, blind crawl. The presentation and paper
should focus on how the page calculation can be done in parallel
with a crawl and how that affects the crawl.

2. A client / server game. Pick a simple 2 player game, for instance
“connect 4”. Implement that game so that the principle play logic is
on the server side. Logic may be written in any language so long at it
can be called from the command line. (You can execute any command
line program from PHP. If you take this direction, see me.) The client
will be within a standard web browser and may use javascript
(Javascript is not required.) However, the javascript and intelligence
on the client side should be minimal. Essentially the only intelligence
on the client side should be with respect to formatting the display.
The server-side game play may be arbitrarily stupid. The only
requirement is that the server make legal moves. (Once things are
working you may want to make the game play smarter This project is
about the client-server interactions rather than the quality of game
play.
Notes: This is possible to do remotely, but will be a challenge. It is
also possible to set up Macintosh computers to run both the client and
server (PHP) locally, and only at the end install on CS department
machines. Doing so is entirely up to you.

3. Snippet finder. One of the things that people use to evaluate a search
result is a snippet of the text of the document that suggests why the
document is relevant to the query. Write a system to find snippets.
For instance, a binary-search style approach would be to cut the
document in half, evaluate both halves (with respect to the query)
and pick the half with the higher score. Repeat until you have an
appropriately sized snippet. (This binary-search approach is flawed in

several ways but can be made to work.) Other approaches might work
even better. (See for instance, section 8.7 of the text.) While speed is
certainly important and is a focus of the text, I am more interested in
finding high quality snippets.

