
Name:

CS380: Modern Functional Programming
Prof. Richard Eisenberg

Spring 2017

Practice Exam 2

This exam has two parts. The first part, attached to this cover sheet, contains several
questions (worth a total of 30 points) that are to be completed without the use of a computer.
You will hand this handwritten part into the folder provided before starting the computer
work. You may not retrieve the handwritten part once you have submitted it. The second
part, distributed separately, describes problems to be completed on the computer. Download
the Exam2.hs file from the course syllabus page and put your answers in that file. Do not
change the name of the file. Do not make any other files. When you are done, upload the
file to Gradescope.

This entire exam is open-book/open-note. You may use any printed resources you like. You
may not use any computing devices, such as laptops, phones, or calculators on this part. On
the computerized section, you may use any websites you like, but you may not communicate
with others.

I certify that my responses in this examination are solely the product of my own
work and that I have fully abided by the Bryn Mawr College Academic Integrity
policy and instructions stated above while taking this exam. (Sign before handing
in the first section.)

Signature:

Printed Name:

1

1. Write a function merge that takes two Vecs (which we assume are in sorted order) and
produces a sorted Vec combining them. The Vecs should be able to store any type
that allows for comparisons.

merge [3, 7, 8] [1, 5] == [1, 3, 5, 7, 8]
merge [] [2, 5, 8] == [2, 5, 8]
merge [5] [1, 2] == [1, 2, 5]
merge [7, 8] [] == [7, 8]
merge [] [] == []

2. Write a function runningSum that computes the partial sums of a Vec of Ints. That is,
each element in the output should be the sum of the numbers that came before that
location in the input.

runningSum [1, 2, 3, 4] == [1, 3, 6, 10]
runningSum [5, 5] == [5, 10]
runningSum [] == []

3. Write a function mins that takes a VecList of Vecs of Ints and returns a Vec of the
minima of each vec . If a Vec is empty, the minimum of that Vec is 0.

mins [[3, 8], [9, 2, 7], [], [6, 1, 2]] == [3, 2, 0, 1]
mins [] == []
mins [[], []] == [0, 0]
mins [[7, 8], [1, 2, 3]] == [7, 1]

4. Write a function wither that takes a Vec and removes every second element, starting
with the first. The element type can be anything.

wither [1, 2, 3, 4, 5] == [2, 4]
wither [1, 2, 3, 4, 5, 6] == [2, 4, 6]
wither [1, 2] == [2]
wither [1] == []
wither [] == []

2

5. Write a function repeater that looks for a repeated element in a Vec . The element type
can be any type that supports equality comparisons. If it finds an element that occurs
in the list twice in a row, the function returns Just the index of the first element, as a
Fin. If there are no repeaters, then repeater returns Nothing . (That is, the return type
is Maybe (Fin ???), for your choice of ???.)

repeater [5, 3, 1, 2, 2, 8] == Just 3
repeater [8, 2, 2, 0, 6, 6, 7] == Just 1
repeater [1, 2, 3, 1, 2, 3] ==Nothing
repeater [8, 8] == Just 0
repeater [9] ==Nothing
repeater [] ==Nothing

3

