
CS380: Modern Functional Programming
Prof. Richard Eisenberg

Spring 2017

Homework 4: Processing JSON
due 9:40am on Monday, Feb. 27, 2017

No template file is provided for this homework. Download the markets.json file from the website, and
make your Hw04.hs Haskell file with your name, any sources you consulted, and any other relevant comments
(just like in previous assignments). Then, say

{-# LANGUAGE DeriveGeneric, OverloadedStrings, DeriveAnyClass, GADTSyntax #-}
module Hw04 where

import Data.Aeson
import Data.Monoid
import GHC.Generics

import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.Text as T

and off you go. Do make sure to include this module header, as it makes grading much easier.

1 Preface

1.1 Setup

You will need two packages that are not part of Haskell’s standard library for this assignment. They are
aeson and text. You can install these with cabal update; cabal install aeson text.1 If you have GHCi open,
you will need to restart GHCi to use these downloaded libraries.

1.2 Generics

You will see the language extension DeriveGeneric in the module header given above. This allows you to
name the class Generic2 in a deriving clause when declaring a new datatype. You will not use any of the
methods or other features of the Generic class. The reason to derive Generic is for easy interoperability with
the aeson JSON-parsing library. A derived Generic instance encodes various features of a datatype (such as
its constructor names, any record-field names, etc.) that advanced Haskellers can (such as the authors of
aeson) use to make your life easier.

1.3 JSON files

This homework centers around parsing and then querying information stored in a JSON file. JSON is a
standardized data interchange format that is easy to read and easy to write. See json.org for the details,
but you won’t need to know about details for this assignment. Instead, the aeson library does all the work
for you!

What you do have to worry about is making sure that your Haskell program can find your markets.json
file. Putting the file in the same directory as your Hw04.hs file is a great start, but it’s not always enough.
If you’re having trouble getting your code to find your file, and you’re using GHCi, try running :!pwd . That
will print out the current directory GHCi thinks it’s in. (The :! prefix allows you to run arbitrary shell
commands within GHCi.) If markets.json isn’t there, either move it there, or use :cd to move GHCi.3

1The cabal update part is to make sure you download the most recent versions of these packages.
2imported from GHC.Generics
3:cd is a GHCi command. The missing ’ is intentional!

1

http://cs.brynmawr.edu/cs380/09/markets.json
json.org


1.4 String theory

Haskell’s built-in String type is a little silly. Sure, it’s programmatically convenient to think of Strings as
lists of characters, but that’s a terrible, terrible way to store chunks of text in the memory of a computer.
Depending on an application’s need, there are several other representations of chunks of text available. This
assignment will need two other representations: ByteString and Text.

The ByteString library helpfully (?) uses many of the same names for functions as the Prelude and
Data.List. If you just import Data.ByteString , you’ll get a ton of name clashes in your code. Instead, we use
import qualified ... as B, which means that every use of a ByteString function (including operators) or type
must be preceded by B. . Thus, to get the length of a ByteString , you use B.length. Even to mention the
type ByteString , you must use B.ByteString .

ByteStrings come in several flavors, depending on whether they are lazy or strict and what encoding they
use internally. Laziness is a story for another day, and we really don’t want to worry about encodings. For
now, use Data.ByteString.Lazy.Char8 and everything will work out nicely.

Text is quite like ByteString : it also reuses a lot of familiar names. It also comes in two laziness flavors.
We’ll be using the strict flavor, which is provided in Data.Text. You also may want some I/O operations, so
the import statements above include the Data.Text.IO module.

When working with non-String strings, it is still very handy to use the "..." syntax for writing Text
or ByteString values. So, GHC provides the OverloadedStrings extension. This works quite similarly to
overloaded numbers, in that every use of "blah" becomes a call to fromString "blah", where fromString is
a method in the IsString type class. Values of any type that has an instance of IsString can then be created
with the "..." syntax. Of course, ByteString and Text are both in the IsString class, as is String .

A consequence of OverloadedStrings is that sometimes GHC doesn’t know what string-like type you want,
so you may need to provide a type signature. You generally won’t need to worry about OverloadedStrings
as you write your code for this assignment, but this explanation is meant to help if you get strange error
messages.

2



2 Off to the market

http://www.bayoucityoutdoors.com/ClubPortal/ClubStatic.cfm?clubID=3&pubmenuoptID=11318

The markets.json file you have downloaded contains information about many (all?) of the Farm-
ers’ Markets that regularly take place throughout the USA, originally retrieved via http://catalog.

data.gov/dataset/farmers-markets-geographic-data. That website produces the data in an Excel
spreadsheet. I converted the spreadsheet to a comma-separated-values format (CSV) and then used http:

//www.convertcsv.com/csv-to-json.htm to get it into a JSON format. I chose JSON because the aeson
JSON parser is more advanced yet easier to use than the CSV parser package, cassava.4

Take a look at the data by opening up the file in a text editor. You’ll see that each market entry has
many different fields, all with distinct names but of different types.

First, notice that the many Boolean values in the file are labeled with "Y" or "N". As smart as aeson is,
it doesn’t know that "Y" corresponds to True and "N" corresponds to False. Your first task is to construct
a Value5 that has been adjusted to have proper Booleans instead of "Y" and "N".

One aeson function that parses JSON is called decode:

decode :: FromJSON a⇒ ByteString → Maybe a

The FromJSON type class is also exported by the aeson package6 Its method parseJSON ::Value → Parser a
(which you will not have to write in this assignment) says how to parse from JSON to the class type a. Thus,

4I am giving you these details in case you want to look at other datasets.
5Value is a type from the aeson library. Hoogle does not search the aeson package by default, so you will have to access the

package documentation on Hackage. Try this URL: http://hackage.haskell.org/package/aeson.
6In case you haven’t noticed, I’m using “package” and “library” interchangeably.

3

http://www.bayoucityoutdoors.com/ClubPortal/ClubStatic.cfm?clubID=3&pubmenuoptID=11318
http://catalog.data.gov/dataset/farmers-markets-geographic-data
http://catalog.data.gov/dataset/farmers-markets-geographic-data
http://www.convertcsv.com/csv-to-json.htm
http://www.convertcsv.com/csv-to-json.htm
http://hackage.haskell.org/package/aeson


anything in the FromJSON type class can be parsed from a JSON file. Of course, parsing can fail, so decode
returns a Maybe type.

A useful member of the FromJSON type class is Value. Value represents JSON syntax in a Haskell type.
Check out its documentation.7 A JSON Value can be one of six things: an object (something in braces; a
mapping from key names to other values), an array (something in brackets; a listing of JSON values), some
text, a number, a Boolean value, or the special constant null . Look a little further down in the documentation
to see the definitions for the types Object and Array .

An Object is a HashMap Text Value — that is, a way to get Values indexed by some Text. However, the
details of HashMap aren’t important at all for you. What is critically important is that there is an instance
Functor (HashMap k). That means that a valid type for fmap is (a→ b)→ HashMap k a→ HashMap k b.

An Array is a Vector Value. Vector is a type quite like normal lists but uses a different internal represen-
tation.8 Some operations on Vectors are faster than for lists; some are slower. However, the details of Vector
aren’t important at all for you. What is critically important is that there is an instance Functor Vector .
That means that a valid type for fmap is (a→ b)→ Vector a→ Vector b.

1. Write a function

ynToBool :: Value → Value

that changes all occurrences of String "Y" to be Bool True and all occurrences of String "N" to be
Bool False. No other part of the input Value should change.

2. Write a function

parseData :: B.ByteString → Maybe Value

that takes in a ByteString containing JSON data and outputs either Nothing or a Value that has been
processed by ynToBool .

Hint: This can be very short, if you use Maybe’s Functor instance!

You can easily test this by saying, for example, filedata ← B.readFile "markets.json" in GHCi and
then calling parseData on filedata.

2.1 The Market type

If you define a datatype Market appropriately and include deriving (Generic ,FromJSON), and say instance FromJSON Market
with no where clause, you get an automatic parser for your datatype. For example, if you have9

data Person where
Person :: {name :: String

, age :: Int } → Person
deriving (Show ,Generic ,FromJSON)

p :: Maybe Person
p = decode "{ \"name\" : \"Richard\", \"age\" : 35 }"

You get that p == Just (Person "Richard" 35).10 The aeson library uses the field names in the Person
record (see the lecture notes about record notation) to figure out what the JSON tags should be. The order
doesn’t matter – aeson really is using the names.

7Ignore the ’s in the documentation. They are strictness annotations, which are a story for another day. They don’t affect
you at all here.

8Haskell lists are linked lists; Vectors are arrays.
9Note the syntax for defining a record using the newer-style syntax, with where.

10The extra backslashes in the string above are because the string must contain quotes, and Haskell’s way of putting quotes
in strings is to use backslashes like you see here.

4



3. Write a Market type, including the fields that interest you. At a minimum, include marketname, x
(the longitude of the market), y (the latitude of the market), state, and cheese (which is a Bool). Use
T.Text to represent text. (String also works, but is less efficient.)

4. Then, write a function

parseMarkets :: B.ByteString → Maybe [Market ]

that uses parseData and fromJSON (from the aeson package) to parse in the list of markets in the file.

5. Write an I/O action

loadData :: IO [Market ]

that loads the market data. Use B.readFile :: String → IO B.ByteString . In the event of a parsing
failure, report the error using fail :: String → IO a. (fail aborts an action, reporting an error to the
user. It never returns, so it can be used no matter what IO type is expected. That’s why it returns
type IO a, for any a.)

Once this is defined, you can get your market data by saying mkts ← loadData in GHCi.

3 Interlude: an ordered-list monoid

Before we get to actually searching the loaded market data, it will be helpful to define a monoid for an
ordered list. An ordered list, which we’ll call OrdList, is a wrapper around lists (in the tradition of First,
Last, Sum, and Product, all from the Data.Monoid module) that defines a Monoid instance which keeps the
list ordered, from least to greatest. For example:

data OrdList a where
OrdList :: {getOrdList :: [a ]} → OrdList a
deriving (Eq,Show)

-- include this datatype in your code!

instance Ord a⇒ Monoid (OrdList a) where ...
-- you’ll need to fill in the ellipses

evens :: OrdList Integer
evens = OrdList [2, 4, 6]

odds :: OrdList Integer
odds = OrdList [1, 3, 5]

combined :: OrdList Integer
combined = evens <> odds

Now, combined should have the value OrdList [1, 2, 3, 4, 5, 6], because the (<>) operator maintains the
ordering invariant.

6. Write the OrdList datatype and its Monoid instance. Make sure your implementation of (<>) is
O(m + n), where m and n are the lengths of the input lists.

4 Searching with Monoids

Now that you have a way of loading the market data, you need a way of searching through that data.
Furthermore, it would be nice if the search mechanism is flexible enough to produce data in a Monoid of the
caller’s choice. Although there are, I’m sure, other queries you might want to do, all of our queries are going
to center on searching for a market’s name (the marketname field).

5



Throughout this section, we will be searching among the markets returning a variety of types. To avoid
code repetition, it is helpful to use a type synonym. Include the following in your code:

type Searcher m = T.Text → [Market ]→ m

Thus, a Searcher m is a function that, when given the T.Text to search for in a [Market ], will produce an
m.

7. Write a function

search :: Monoid m⇒ (Market → m)→ Searcher m

that searches through the provided list of Markets for market names containing the given T.Text
(Data.Text.isInfixOf will be useful here). With each found market record, use the function provided to
convert the market record into the monoid of the caller’s choice, and then combine all the individual
results using mappend and mconcat.

Note that we can always expand type synonyms in Haskell. So, the type of search is fully equivalent
to Monoid m ⇒ (Market → m) → T.Text → [Market ] → m. This means that the definition for search
may include up to three arguments, even though the type looks like it should take only one.

Hint: This function should not be very long. If it’s getting long, you’re probably doing something the
wrong way. You may also want to check out the intInts example from the lecture notes.

Hint: Using an as-pattern might be helpful. Here is an example:

marketWithName :: Market → (T.Text,Market)
marketWithName mkt@(Market {marketname = name }) = (name,mkt)

Note that mkt is matched against the whole market record, while the pattern-match also binds name
to the market’s name. The name is just one field in the record matched by mkt.

8. Write a function

firstFound :: Searcher (Maybe Market)

that returns the first market found by a search, if any are found at all.

Like in the case for search, above, your firstFound function can be given arguments, even though the
type looks like there should be no arguments. Unlike search, though, this one is definable without
taking any arguments, with the right call to search.

This function (and all future functions) will not get full credit if they do not use search, which should
actually do the searching.

Hint: The following function may be useful for all the searching exercises. Look at the type to figure
out what it does:

compose2 :: (c → d)→ (a→ b → c)→ a→ b → d
compose2 = (.).(.)

9. Write a function

lastFound :: Searcher (Maybe Market)

that returns the last market found by a search, if any are found at all.

6



10. Write a function

allFound :: Searcher [Market ]

that returns all the markets found by a search.

11. Write a function

numberFound :: Searcher Int

that returns the number of markets found by a search.

12. Write a function

orderedNtoS :: Searcher [Market ]

tht returns all the markets found by a search, ordered from northernmost to southernmost. You will
need an appropriate Ord instance.

You may find that your function takes a little while to run. As an optional extra, make it work more
efficiently by adding a definition for mconcat to the Monoid instance for OrdList and make sure your
search function uses mconcat. The default definition for mconcat puts elements together one by one,
but you can write a custom one that maintains the ordering in a more efficient fashion.

13. (Optional) Now that you’ve built the infrastructure to do queries on this dataset, see if you can find
an interesting detail in the data. It should be fairly easy at this point to make a variety of queries.
Tell us something we didn’t know about farmer’s markets!

7


	Preface
	Setup
	Generics
	JSON files
	String theory

	Off to the market
	The Market type

	Interlude: an ordered-list monoid
	Searching with Monoids

