
CS380: Modern Functional Programming
Prof. Richard Eisenberg

Spring 2017

Lists

Use list comprehensions to solve these problems. They are taken from http://projecteuler.net; they
are problems 1 and 2.

The following definitions from the Haskell standard library will be helpful:

-- sum xs calculates the sum of all the elements in xs. Thus, sum [1, 2, 3] equals 6.
sum :: Num a⇒ [a]→ a

-- zipWith f xs ys applies the function f to corresponding elements in xs and ys.
-- Thus, zipWith (−) [4, 7, 10] [1, 2, 3] equals [3, 5, 7]. If one list is longer than the
-- other, the extra elements in the longer list are ignored.

zipWith :: (a→ b → c)→ [a]→ [b]→ [c]

-- tail xs removes the first element from the list xs and returns the remainder.
-- Thus, tail [1, 2, 3] equals [2, 3]. tail errors if the list is empty.

tail :: [a]→ [a]

-- even x is a predicate that determines whether or not x is even. Thus,
-- even 4 is True while even 9 is False.

even :: Integral a⇒ a→ Bool

-- takeWhile f xs returns the longest prefix of the list xs such that every
-- element in the prefix satisfies predicate f . Thus, takeWhile (<3) [1, 2, 3, 4, 1, 2, 3]
-- equals [1, 2].

takeWhile :: (a→ Bool)→ [a]→ [a]

1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum
of these multiples is 23.

Write an expression that evaluates to the sum of all the multiples of 3 or 5 below 1000.

2. Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting
with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

We can define the infinite list of Fibonacci numbers in Haskell with

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

By considering the terms in the Fibonacci sequence whose values do not exceed four million, write an
expression that evaluates to the sum of the even-valued terms.

1

http://projecteuler.net

