
CS380: Modern Functional Programming
Prof. Richard Eisenberg

Spring 2017

Higher-Order Functions

Suppose the following functions have the types given:

frob :: Int → String → Bool
wurble :: Bool → Int
map :: (a→ b)→ [a]→ [b]
filter :: (a→ Bool)→ [a]→ [a]
zipWith :: (a→ b → c)→ [a]→ [b]→ [c]
($) :: (a→ b)→ a→ b

Give types to each of the following (all considered separately), or write that the definition is ill-typed:

1. f x = x

f ::

2. f x y = x y

f ::

3. f x y = y x

f ::

4. f (x : xs) = x

f ::

5. f (x : xs) = xs

f ::

6. f b = if b then b else b

f ::

7. f x y z = x (y z)

f ::

8. f = map wurble

f ::

9. f = map frob

f ::

10. f = filter wurble

f ::

11. f = filter frob

f ::

12. f = filter (wurble False)

f ::

1

13. f = filter (frob 5)

f ::

14. f = zipWith ($)

f ::

15. f x = filter (($) x)

f ::

16. f x = x x

f ::

We now assume the following definitions:

id :: a→ a
id x = x

const :: a→ b → a
const a = a

Figure out what the following reduce to, or say that the expression is ill-typed:

17. map id [1, 2, 3] −→

18. map (const False) [’x’, ’y’, ’z’] −→

19. filter (const False) "abc" −→

20. filter id [True,False,True] −→

21. zipWith id [id , not] [False,True] −→

22. id not True −→

23. id id ’x’ −→

Rewrite the following definitions into one-liners using map and filter :

24. f [] = []
f (x : xs) = x + 1 : f xs

25. f [] = []
f (x : xs)
| even x = f xs
| otherwise = x : f xs

26. f [] = []
f (x : xs)
| even x = x ‘div ‘ 2 : f xs
| otherwise = f xs

2

27. f [] = []
f (x : xs)
| even y = y : f xs
| otherwise = f xs
where

y = x ‘div ‘ 2

Consider the following definitions:

[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

concatMap [] = []
concatMap f (x : xs) = f x ++ concatMap f xs

28. (++)::

29. concatMap::

30. Use concatMap to write a function dup that duplicates every element in a list. That is dup [’x’, ’y’, ’z’]
evaluates to [’x’, ’x’, ’y’, ’y’, ’z’, ’z’].

3

