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Figure 1.1. (a) A polygon. (b)–(d) Objects that are not polygons.

circumstances (such as in Chapter 2) it will be useful to recognize “flat
vertices.” The set of vertices and edges of P is called the boundary of
the polygon, denoted as ∂P. Figure 1.1(a) shows a polygon with nine
edges joined at nine vertices. Diagrams (b)–(d) show objects that fail to
be polygons.

The fundamental “Jordan curve theorem,” formulated and proved by
Camille Jordan in 1882, is notorious for being both obvious and difficult
to prove in its full generality. For polygons, however, the proof is easier,
and we sketch the main idea.

Theorem 1.1 (Polygonal Jordan Curve). The boundary ∂P of a polygon
P partitions the plane into two parts. In particular, the two compo-
nents of R2 \∂P are the bounded interior and the unbounded exterior.2

Sketch of Proof. Let P be a polygon in the plane. We first choose a fixed
direction in the plane that is not parallel to any edge of P. This is
always possible because P has a finite number of edges. Then any point
x in the plane not on ∂P falls into one of two sets:

1. The ray through x in the fixed direction crosses ∂P an even number
of times: x is exterior. Here a ray through a vertex is not counted as
crossing ∂P.

2. The ray through x in the fixed direction crosses ∂P an odd number of
times: x is interior.

Notice that all points on a line segment that do not intersect ∂P must
lie in the same set. Thus the even sets and the odd sets are connected.
And moreover, if there is a path between points in different sets, then
this path must intersect ∂P.

This proof sketch is the basis for an algorithm for deciding whether a
given point is inside a polygon, a low-level task that is encountered every
time a user clicks inside some region in a computer game, and in many
other applications.

2 The symbol ‘\’ indicates set subtraction: A\ B is the set of points in A but not in B.
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Figure 1.2. (a) A polygon with (b) a diagonal; (c) a line segment; (d) crossing
diagonals.

Exercise 1.2. Flesh out the proof of Theorem 1.1 by supplying arguments
to (a) justify the claim that if there is a path between the even- and
odd-crossings sets, the path must cross ∂P; and (b) establish that for
two points in the same set, there is a path connecting them that does
not cross ∂P.

Algorithms often need to break polygons into pieces for processing. A
natural decomposition of a polygon P into simpler pieces is achieved by
drawing diagonals. A diagonal of a polygon is a line segment connecting
two vertices of P and lying in the interior of P, not touching ∂P except
at its endpoints. Two diagonals are noncrossing if they share no interior
points. Figure 1.2 shows (a) a polygon, (b) a diagonal, (c) a line segment
that is not a diagonal, and (d) two crossing diagonals.

Definition. A triangulation of a polygon P is a decomposition of P into
triangles by a maximal set of noncrossing diagonals.

Here maximal means that no further diagonal may be added to the
set without crossing (sharing an interior point with) one already in
the set. Figure 1.3 shows a polygon with three different triangulations.
Triangulations lead to several natural questions. How many different
triangulations does a given polygon have? How many triangles are
in each triangulation of a given polygon? Is it even true that every
polygon always has a triangulation? Must every polygon have at least
one diagonal? We start with the last question.

Figure 1.3. A polygon and three possible triangulations.
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Figure 1.12. Examples of the range of visibility available to certain placement of
guards.

A point x in polygon P is visible to point y in P if the line segment xy
lies in P. This definition allows the line of sight to have a grazing contact
with the boundary ∂P (unlike the definition for diagonal). A set of guards
covers a polygon if every point in the polygon is visible to some guard.
Figure 1.12 gives three examples of the range of visibility available to
single guards in polygons.

A natural question is to ask for the minimum number of guards
needed to cover polygons. Of course, this minimum number depends on
the “complexity” of the polygon in some way. We choose to measure
complexity in terms of the number of vertices of the polygon. But two
polygons with n vertices can require different numbers of guards to cover
them. Thus we look for a bound that is good for any polygon with n
vertices.3

Exercise 1.27. For each polygon in Figure 1.8, find the minimum number
of guards needed to cover it.

Exercise 1.28. Suppose that guards themselves block visibility so that
a line of sight from one guard cannot pass through the position of
another. Are there are polygons for which the minimum of our more
powerful guards needed is strictly less than the minimum needed for
these weaker guards?

Let’s start by looking at some examples for small values of n.
Figure 1.13 shows examples of covering guard placements for polygons
with a small number of vertices. Clearly, any triangle only needs one
guard to cover it. A little experimentation shows that the first time two
guards are needed is for certain kinds of hexagons.

Exercise 1.29. Prove that any quadrilateral needs only one guard to cover
it. Then prove that any pentagon needs only one guard to cover it.

3 To find the minimum number of guards for a particular polygon turns out to be, in general,
an intractable algorithmic task. This is an instance of another NP-complete problem; see the
Appendix.
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Figure 1.13. Examples of guard placements for different polygons.

Exercise 1.30. Modify Lemma 1.18 to show that one guard placed
anywhere in a convex polygon can cover it.

By the previous exercise, convex polygons need only one guard for
coverage. The converse of this statement is not true, however. There
are polygons that need only one guard but which are not convex. These
polygons are called star polygons. Figure 1.8(c) is an example of a star
polygon.

While correct placement avoids the need for a second guard for
quadrilaterals and pentagons, one can begin to see how reflex vertices
will cause problems in polygons with large numbers of vertices. Because
there can exist only so many reflex angles in a polygon, we can construct a
useful example, based on prongs. Figure 1.14 illustrates the comb-shaped
design made of 5 prongs and 15 vertices. We can see that a comb of
n prongs has 3n vertices, and since each prong needs its own guard,
then at least !n/3" guards are needed. Here the symbols ! " indicate
the floor function: the largest integer less than or equal to the enclosed
argument.4 Thus we have a lower bound on Klee’s problem: !n/3" guards
are sometimes necessary.

Figure 1.14. A comb-shaped example.

4 Later we will use its cousin, the ceiling function # $, the smallest integer greater than or equal
to the argument.
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Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.
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Figure 3.6: A map of Europe and its corresponding representation by a planar
graph, along with a four-coloring of the vertices.

To illustrate how complications can easily sneak into mathematics, it
turns out that it is relatively easy to prove that the chromatic number of
a planar graph is less than or equal to 5. Before we give this proof, we need
to prove the following:

Theorem 3.7: Every planar graph G has a vertex v with d(v)  5.

Proof. For all planar graphs with n  6 vertices, the theorem is obviously
true. For planar graphs with n > 6, we prove the theorem by contradiction.
To this end, consider a planar graph G for which n > 6. Let m be the number
of edges of G. We know that Âv2V(G) d(v) = 2m. Therefore, if there is no
vertex with degree 5 or less, then 6n  2m. In addition, from Theorem 2.9
we know that m  3n � 6, and thus that 6n  6n � 12. Obviously, this is
false, meaning that our assumption that there is no vertex with degree 5 or
less must be false as well.
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Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.
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Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.
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•  A	
  triangula)on	
  of	
  a	
  planar	
  point	
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•  Let	
  G	
  be	
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  connected	
  planar	
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  with	
  V	
  
ver)ces,	
  E	
  edges	
  and	
  F	
  faces,	
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  =	
  2	
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Theorem	
  

•  Let	
  S	
  be	
  a	
  point	
  set	
  with	
  h	
  points	
  on	
  the	
  hull	
  
and	
  k	
  in	
  the	
  interior.	
  If	
  all	
  points	
  are	
  in	
  general	
  
posi)on,	
  then	
  any	
  triangula)on	
  of	
  S	
  has	
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  2k+h-­‐2	
  triangles	
  and	
  3k+2h-­‐1	
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Defini)on	
  

•  For	
  a	
  point	
  set	
  S,	
  a	
  flip	
  graph	
  of	
  S	
  is	
  a	
  graph	
  
whose	
  nodes	
  are	
  the	
  set	
  of	
  triangula)ons	
  of	
  S.	
  
Two	
  nodes	
  T1	
  and	
  T2	
  are	
  connected	
  by	
  an	
  
edge	
  if	
  one	
  diagonal	
  of	
  T1	
  can	
  be	
  flipped	
  to	
  
obtain	
  T2.	
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Theorem	
  

•  The	
  flip	
  graph	
  of	
  any	
  planar	
  point	
  set	
  is	
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•  Proof	
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Angle	
  Sequence	
  

•  Let	
  T	
  be	
  a	
  triangula)on	
  of	
  a	
  point	
  set	
  S,	
  and	
  
suppose	
  T	
  has	
  n	
  triangles.	
  The	
  angle	
  sequence	
  
{a1,	
  a2,	
  …,	
  an}	
  lists	
  all	
  3n	
  angles	
  of	
  T	
  in	
  sorted	
  
order.	
  	
  

•  A	
  triangula)on	
  T1	
  is	
  fafer	
  than	
  T2	
  (T1	
  >	
  T2)	
  if	
  
the	
  angle	
  sequence	
  of	
  T1	
  is	
  lexicographically	
  
greater	
  than	
  T2’s.	
  	
  
–  {20°,	
  30°,	
  45°,	
  65°,	
  120°}	
  >	
  {20°,	
  30°,	
  45°,	
  60°,	
  120°}	
  



Delaunay	
  Triangula)on	
  

•  For	
  each	
  convex	
  quad	
  in	
  a	
  
triangula)on	
  T1	
  with	
  diagonal	
  e,	
  
if	
  a	
  diagonal	
  flip	
  results	
  in	
  a	
  
triangula)on	
  T2,	
  s.t.	
  T1	
  ≥	
  T2,	
  then	
  
e	
  is	
  legal.	
  	
  

•  A	
  Delaunay	
  triangula)on	
  is	
  a	
  
triangula)on	
  with	
  all	
  legal	
  
edges.	
  



When	
  Edges	
  Have	
  Weights	
  

•  A	
  minimum	
  spanning	
  tree	
  (MST)	
  of	
  a	
  graph	
  is	
  
a	
  tree	
  that	
  connects	
  every	
  vertex	
  and	
  
minimizes	
  the	
  total	
  edge	
  weights	
  (lengths).	
  



Two	
  Greedy	
  Algorithms	
  

•  Kruskal’s:	
  An	
  algorithm	
  that	
  always	
  chooses	
  
the	
  next	
  shortest	
  edge	
  that	
  does	
  not	
  result	
  in	
  
a	
  cycle.	
  

•  Prim’s:	
  Similar,	
  but	
  maintains	
  a	
  connected	
  
tree	
  at	
  all	
  )mes	
  
– start	
  with	
  VMST	
  =	
  {vx}	
  and	
  EMST	
  =	
  {}	
  
–  repeat	
  un)l	
  VMST	
  =	
  V:	
  find	
  min	
  e	
  =	
  {vi,	
  vj}	
  such	
  that	
  
vi	
  is	
  in	
  VMST	
  and	
  vj	
  is	
  not.	
  Add	
  vj	
  to	
  VMST	
  and	
  add	
  e	
  
to	
  EMST	
  



Edge	
   Weight	
   Comment	
  

(3,	
  4)	
   1	
   selec)on	
  1	
  

(1,	
  5)	
   5	
   selec)on	
  2	
  

(1,	
  4)	
   13	
   selec)on	
  3	
  

(3,	
  7)	
   23	
   selec)on	
  4	
  

(7,	
  8)	
   26	
   selec)on	
  5	
  

(1,	
  7)	
   38	
   cycle	
  (1,7,3,4,1)	
  

(5,	
  7)	
   46	
   cycle	
  (1,5,7,3,4,1)	
  

(2,	
  6)	
   50	
   selec)on	
  6	
  

(5,	
  8)	
   65	
   cycle	
  (1,5,8,7,3,4,1)	
  

(6,	
  8)	
   72	
   selec)on	
  7	
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Figure 5.5: Applying Kruskal’s algorithm to finding a minimal spanning tree.

117

Kruskal’s	
  



Vertex	
   Edge	
   Weight	
   Comment	
  

4	
   selec)on	
  0	
  

3	
   (3,	
  4)	
   1	
   selec)on	
  1	
  

1	
   (1,	
  4)	
   13	
   selec)on	
  2	
  

5	
   (1,	
  5)	
   5	
   selec)on	
  3	
  

7	
   (3,	
  7)	
   23	
   selec)on	
  4	
  

8	
   (7,	
  8)	
   26	
   selec)on	
  5	
  

6	
   (6,	
  8)	
   72	
   selec)on	
  6	
  

2	
   (2,	
  6)	
   50	
   selec)on	
  7	
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Minimum	
  Weight	
  Triangula)on	
  

•  A	
  minimum	
  weight	
  triangula)on	
  (MWT)	
  is	
  a	
  
triangula)on	
  of	
  a	
  point	
  set	
  that	
  minimizes	
  
the	
  total	
  edge	
  lengths	
  (weights).	
  



Delaunay	
  is	
  not	
  MWT	
  



Delaunay	
  vs.	
  Greedy	
  vs.	
  MWT	
  



Theorem	
  

•  For	
  point	
  set	
  S,	
  a	
  minimum	
  spanning	
  tree	
  of	
  S	
  
is	
  a	
  subset	
  of	
  the	
  Delaunay	
  triangula)on	
  of	
  S.	
  

•  Proof	
  by	
  contradic)on.	
  


