Network Metrics, Planar Graphs, and Software Tools

Based on materials by Lala Adamic, UMichigan
Network Metrics: Bowtie Model of the Web

- The Web is a directed graph:
 - webpages link to other webpages
- The connected components tell us what set of pages can be reached from any other just by surfing (no ‘jumping’ around by typing in a URL or using a search engine)
- Broder et al. 1999 – crawl of over 200 million pages and 1.5 billion links.
- SCC – 27.5%
- IN and OUT – 21.5%
- Tendrils and tubes – 21.5%
-Disconnected – 8%
Network Metrics: Size of Giant Component

- If the largest component encompasses a significant fraction of the graph, it is called the **giant component**.
Characterizing Networks: How far apart are things?
Network Metrics: Shortest Paths

- Shortest path (also called a geodesic path)
 - The shortest sequence of links connecting two nodes
 - Not always unique

- A and C are connected by 2 shortest paths
 - A – E – B - C
 - A – E – D - C

- Diameter: the largest geodesic distance in the graph

 - The distance between A and C is the maximum for the graph: 3

- Caution: some people use the term ‘diameter’ to be the average shortest path distance, in this class we will use it only to refer to the maximal distance
Characterizing Networks: How Dense Are They?
Network Metrics: Graph Density

- Of the connections that may exist between n nodes
 - directed graph
 \[e_{\text{max}} = n \times (n-1) \]
 each of the n nodes can connect to $(n-1)$ other nodes
 - undirected graph
 \[e_{\text{max}} = \frac{n \times (n-1)}{2} \]
 since edges are undirected, count each one only once

- What fraction are present?
 - density = e / e_{max}

- For example, out of 12 possible connections, this graph has 7, giving it a density of $7/12 = 0.583$

- Would this measure be useful for comparing networks of different sizes (different numbers of nodes)?
Bipartite (Two-mode) Networks

- edges occur only between two groups of nodes, not within those groups
- for example, we may have individuals and events
 - directors and boards of directors
 - customers and the items they purchase
 - metabolites and the reactions they participate in
Going From A Bipartite To A One-mode Graph

- Two-mode network

- One mode projection
 - two nodes from the first group are connected if they link to the same node in the second group
 - some loss of information
 - naturally high occurrence of cliques
Bi-cliques (Cliques In Bipartite Graphs)

- $K_{m,n}$ is the complete bipartite graph with m and n vertices of the two different types
- $K_{3,3}$ maps to the utility graph
 - Is there a way to connect three utilities, e.g. gas, water, electricity to three houses without having any of the pipes cross?
Planar graphs

- A graph is planar if it can be drawn on a plane without any edges crossing
Cliques and complete graphs

- K_n is the complete graph (clique) with K vertices
 - each vertex is connected to every other vertex
 - there are $n\times(n-1)/2$ undirected edges
A finite graph G is planar if and only if it has no subgraph that is homeomorphic or edge-contractible to the complete graph in five vertices (K_5) or the complete bipartite graph $K_{3,3}$. (Kuratowski's Theorem)
Example of using edge contractions to show a graph is not planar
#s of Planar Graphs of Different Sizes

- 1:1
- 2:2
- 3:4
- 4:11

Every planar graph has a straight line embedding
Trees are undirected graphs that contain no cycles.
Examples of Trees

- In nature
- Man made
- Computer science
- Network analysis
Overview of Network Analysis Tools

Pajek
- network analysis and visualization, menu driven, suitable for large networks
- platforms: Windows (on linux via Wine)
- download

Netlogo
- agent based modeling
- recently added network modeling capabilities
- platforms: any (Java)
- download

GUESS
- network analysis and visualization, extensible, script-driven (jython)
- platforms: any (Java)
- download

Other software tools that we will not be using but that you may find useful:

Visualization and analysis:
- UCinet - user friendly social network visualization and analysis software (suitable smaller networks)
- iGraph - if you are familiar with R, you can use iGraph as a module to analyze or create large networks, or you can directly use the C functions
- Jung - comprehensive Java library of network analysis, creation and visualization routines
- Graph package for Matlab (untested?) - if Matlab is the environment you are most comfortable in, here are some basic routines
- SNA package for R - all sorts of analysis + heavy duty stats to boot
- NetworkX - python based free package for analysis of large graphs
- InfoVis Cyberinfrastructure - large agglomeration of network analysis tools/routines, partly menu driven

Visualization only:
- GraphViz - open source network visualization software (can handle large/specialized networks)
- TouchGraph - need to quickly create an interactive visualization for the web?
- yEd - free, graph visualization and editing software

Specialized:
- fast community finding algorithm
- motif profiles
- CLAIR library - NLP and IR library (Perl Based) includes network analysis routines

finally: [INSNA long list of SNA packages](#)
Common Tools

- **Pajek**: extensive menu-driven functionality, including many, many network metrics and manipulations
 - but... not extensible

- **Guess**: extensible, scriptable tool of exploratory data analysis, but more limited selection of built-in methods compared to Pajek

- **NetLogo**: general agent based simulation platform with excellent network modeling support

- **iGraph**: libraries can be accessed through R or python. Routines scale to millions of nodes.
Other Tools: Visualization Tool: gephi

- http://gephi.org
- primarily for visualization, has some nice touches
Visualization Tool: GraphViz

- Takes descriptions of graphs in simple text languages
- Outputs images in useful formats
- Options for shapes and colors
- Standalone or use as a library

- dot: hierarchical or layered drawings of directed graphs, by avoiding edge crossings and reducing edge length
- neato (Kamada-Kawai) and fdp (Fruchterman-Reinhold with heuristics to handle larger graphs)
- twopi – radial layout
- circo – circular layout

http://www.graphviz.org/
digraph G {
 ranksep=4
 nodesep=0.1
 size="8,11"
 ARCH531_20061 [label="ARCH531",style=bold,color=yellow,style=filled]
 ARCH531_20071 [label="ARCH531",gstyle=bold,color=yellow,style=filled]
 BIT512_20071 [label="BIT512",gstyle=bold,color=yellow,style=filled]
 BIT513_20071 [label="BIT513",gstyle=bold,color=yellow,style=filled]
 BIT646_20064 [label="BIT646",gstyle=bold,color=yellow,style=filled]
 BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled]
 DESCI502_20071 [label="DESCI502",gstyle=bold,color=yellow,style=filled]
 ECON500_20064 [label="ECON500",gstyle=bold,color=yellow,style=filled]
 ...
 SI791_20064->SI549_20064[weight=2,color=slategray,style="setlinewidth(4)"]
 SI791_20064->SI596_20071[weight=5,color=slategray,style=bold,style="setlinewidth(10)"]
 SI791_20064->SI616_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]
 SI791_20064->SI702_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]
 SI791_20064->SI719_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]}
Other visualization tools: Walrus

- developed at CAIDA available under the GNU GPL.
- “…best suited to visualizing moderately sized graphs that are nearly trees. A graph with a few hundred thousand nodes and only a slightly greater number of links is likely to be comfortable to work with.”
- Java-based
- Implemented Features
 - rendering at a guaranteed frame rate regardless of graph size
 - coloring nodes and links with a fixed color, or by RGB values stored in attributes
 - labeling nodes
 - picking nodes to examine attribute values
 - displaying a subset of nodes or links based on a user-supplied boolean attribute
 - interactive pruning of the graph to temporarily reduce clutter and occlusion
 - zooming in and out

Visualization Tools: yEd - JavaTM Graph Editor
(good primarily for layouts, maybe free)
yEd and 26,000 nodes (takes a few seconds)
Visualization Tools: Prefuse

- (free) user interface toolkit for interactive information visualization
 - built in Java using Java2D graphics library
 - data structures and algorithms
 - pipeline architecture featuring reusable, composable modules
 - animation and rendering support
 - architectural techniques for scalability
- requires knowledge of Java programming
- website: http://prefuse.sourceforge.net/
Simple prefuse visualizations

(a) Animated radial layout.

(b) Force-directed layout with overview.

(c) Hyperbolic tree.

(d) TreeMap.

(e) SpotPlot scatterplot.

(f) Fisheye graph. (g) Fisheye menu.

Examples of prefuse applications: flow maps

A flow map of migration from California from 1995-2000, generated automatically using edge routing but no layout adjustment.

http://graphics.stanford.edu/papers/flow_map_layout/
Examples of prefuse applications: vizster

http://jheer.org/vizster/