Network Metrics, Planar Graphs, and Software Tools

Based on materials by Lala Adamic, UMichigan

Network Metrics: Bowtie Model of the Web

- The Web is a directed graph:
 - webpages link to other webpages
- The connected components tell us what set of pages can be reached from any other just by surfing (no 'jumping' around by typing in a URL or using a search engine)
- Broder et al. 1999 crawl of over 200 million pages and 1.5 billion links.
- SCC 27.5%
- IN and OUT 21.5%
- Tendrils and tubes 21.5%
- Disconnected 8%

Network Metrics: Size of Giant Component

if the largest component encompasses a significant fraction of the graph, it is called the giant component

Characterizing Networks: How far apart are things?

Network Metrics: Shortest Paths

- Shortest path (also called a geodesic path)
 - The shortest sequence of links connecting two nodes
 - Not always unique
 - A and C are connected by 2 shortest paths
 - A E B C
 - A E D C

Diameter: the largest geodesic distance in the graph

- The distance between A and C is the maximum for the graph: 3
- Caution: some people use the term 'diameter' to be the average shortest path distance, in this class we will use it only to refer to the maximal distance

Characterizing Networks: How Dense Are They?

Network Metrics: Graph Density

Of the connections that may exist between n nodes

directed graph e_{max} = n*(n-1)

each of the n nodes can connect to (n-1) other nodes

- undirected graph e_{max} = n*(n-1)/2 since edges are undirected, count each one only once
- What fraction are present?
 - density = e/ e_{max}
 - For example, out of 12 possible connections, this graph has 7, giving it a density of 7/12 = 0.583
- Would this measure be useful for comparing networks of different sizes (different numbers of nodes)?

Bipartite (Two-mode) Networks

- edges occur only between two groups of nodes, not within those groups
- for example, we may have individuals and events
 - directors and boards of directors
 - customers and the items they purchase
 - metabolites and the reactions they participate in

Going From A Bipartite To A One-mode Graph

Two-mode network

One mode projection

- two nodes from the first group are connected if they link to the same node in the second group
- some loss of information
- naturally high occurrence of cliques

Bi-cliques (Cliques In Bipartite Graphs)

- K_{m,n} is the complete bipartite graph with m and n vertices of the two different types
- K_{3,3} maps to the utility graph
 - Is there a way to connect three utilities, e.g. gas, water, electricity to three houses without having any of the pipes cross?

Planar graphs

A graph is planar if it can be drawn on a plane without any edges crossing

Cliques and complete graphs

K_n is the complete graph (clique) with K vertices

- each vertex is connected to every other vertex
- there are n*(n-1)/2 undirected edges

 $\cdot K_5$

Edge contractions defined

A finite graph G is planar if and only if it has no subgraph that is homeomorphic or edge-contractible to the complete graph in five vertices (K₅) or the complete bipartite graph K_{3, 3}. (Kuratowski's Theorem)

Peterson graph

Example of using edge contractions to show a graph is not planar

#s of Planar Graphs of Different Sizes

Trees

Trees are undirected graphs that contain no cycles

Examples of Trees

Man made

Computer science

Network analysis

NETWORK VISUALIZATION AND ANALYSIS SOFTWARE

Overview of Network Analysis Tools

Pajek	Pajek	network analysis and visualization, menu driven, suitable for large networks	platforms: Windows (on linux via Wine) <u>download</u>
	Netlogo	agent based modeling recently added network modeling capabilities	platforms: any (Java) <u>download</u>
	GUESS	network analysis and visualization, extensible, script-driven (jython)	platforms: any (Java) <u>download</u>

Other software tools that we will not be using but that you may find useful:

visualization and analysis:

UCInet - user friendly social network visualization and analysis software (suitable smaller networks)

iGraph - if you are familiar with R, you can use iGraph as a module to analyze or create large networks, or you can directly use the C functions

Jung - comprehensive Java library of network analysis, creation and visualization routines

Graph package for Matlab (untested?) - if Matlab is the environment you are most comfortable in, here are some basic routines

SIENA - for p* models and longitudinal analysis

SNA package for R - all sorts of analysis + heavy duty stats to boot

NetworkX - python based free package for analysis of large graphs

InfoVis Cyberinfrastructure - large agglomeration of network analysis tools/routines, partly menu driven

visualization only:

GraphViz - open source network visualization software (can handle large/specialized networks)

TouchGraph - need to quickly create an interactive visualization for the web?

<u>vEd</u> - free, graph visualization and *editing* software

specialized:

fast community finding algorithm

motif profiles

CLAIR library - NLP and IR library (Perl Based) includes network analysis routines

finally: INSNA long list of SNA packages

Common Tools

Pajek: extensive menu-driven functionality, including many, many network metrics and manipulations

but... not extensible

- Guess: extensible, scriptable tool of exploratory data analysis, but more limited selection of built-in methods compared to Pajek
- NetLogo: general agent based simulation platform with excellent network modeling support
- iGraph: libraries can be accessed through R or python. Routines scale to millions of nodes.

Other Tools: Visualization Tool: gephi

http://gephi.org

primarily for visualization, has some nice touches

Visualization Tool: GraphViz

- Takes descriptions of graphs in simple text languages
- Outputs images in useful formats
- Options for shapes and colors
- Standalone or use as a library
- dot: hierarchical or layered drawings of directed graphs, by avoiding edge crossings and reducing edge length
- neato (Kamada-Kawai) and fdp (Fruchterman-Reinhold with heuristics to handle larger graphs)
- twopi radial layout
- circo circular layout

http://www.graphviz.org/

GraphViz: dot language

digraph G { ranksep=4 nodesep=0.1 size="8,11" ARCH531_20061 [label="ARCH531",style=bold,color=yellow,style=filled] ARCH531_20071 [label="ARCH531",gstyle=bold,color=yellow,style=filled] BIT512_20071 [label="BIT512",gstyle=bold,color=yellow,style=filled] BIT513_20071 [label="BIT513",gstyle=bold,color=yellow,style=filled] BIT646_20064 [label="BIT646",gstyle=bold,color=yellow,style=filled] BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled] BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled] BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled] BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled] BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled]

...

SI791_20064->SI549_20064[weight=2,color=slategray,style="setlinewidth(4)"]SI791_20064->SI596_20071[weight=5,color=slategray,style=bold,style="setlinewidth(10)"]SI791_20064->SI616_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064->SI702_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064->SI719_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064-

Dot (GraphViz)

Neato (Graphviz)

Other visualization tools: Walrus

- developed at CAIDA available under the <u>GNU GPL</u>.
- "...best suited to visualizing moderately sized graphs that are nearly trees. A graph with a few hundred thousand nodes and only a slightly greater number of links is likely to be comfortable to work with."
- Java-based
- Implemented Features
 - rendering at a guaranteed frame rate regardless of graph size
 - coloring nodes and links with a fixed color, or by RGB values stored in attributes
 - labeling nodes
 - picking nodes to examine attribute values
 - displaying a subset of nodes or links based on a user-supplied boolean attribute
 - interactive pruning of the graph to temporarily reduce clutter and occlusion
 - zooming in and out

Visualization Tools: yEd - JavaTM Graph Editor

http://www.yworks.com/en/products yed about.htm

(good primarily for layouts, maybe free)

yEd and 26,000 nodes (takes a few seconds)

Visualization Tools: Prefuse

- (free) user interface toolkit for interactive information visualization
 - built in Java using Java2D graphics library
 - data structures and algorithms
 - pipeline architecture featuring reusable, composable modules
 - animation and rendering support
 - architectural techniques for scalability
- requires knowledge of Java programming
- website: http://prefuse.sourceforge.net/
 - CHI paper http://guir.berkeley.edu/pubs/chi2005/prefuse.pdf

Simple prefuse visualizations

(a) Animated radial layout.

(d) TreeMap.

(b) Force-directed layout with overview.

Humanilise Humani

(c) Hyperbolic tree.

(f) Fisheye graph. (g) Fisheye menu.

Source: Prefuse, http://prefuse.sourceforge.net/

Examples of prefuse applications: flow maps

Examples of prefuse applications: vizster http://jheer.org/vizster/