
CMSC 380

Graph Traversals and Search

2

Graph Traversals

n  Graphs can be traversed breadth-first, depth-
first, or by path length

n  We need to specifically guard against cycles
q  Mark each vertex as “closed” when we encounter

it and do not consider closed vertices again

Queuing Function

n  Used to maintain a ranked list of nodes that are
candidates for expansion

n  Substituting different queuing functions yields
different traversals/searches:
q  FIFO Queue : breadth first traversal
q  LIFO Stack : depth first traversal
q  Priority Queue : Dijkstra’s algorithm / uniform cost

Bookkeeping Structures
n  Typical node structure includes:

q  vertex ID
q  predecessor node
q  path length
q  cost of the path

n  Problem includes:
q  graph
q  starting vertex
q  goalTest(Node n) – tests if node is a goal state (can

be omitted for full graph traversals)

5

General Graph Search / Traversal
// problem describes the graph, start vertex, and goal test
// queueingfn is a comparator function that ranks two states
// graphSearch returns either a goal node or failure

graphSearch(problem, queuingFn) {
open = {}, closed = {}

queuingFn(open, new Node(problem.startvertex)) //initialize

loop {
 if empty(open) then return FAILURE //no nodes remain

 curr = removeFront(open) //get current node

 if problem.goalTest(curr.vertex) //optional goaltest
 return curr //for search

 if curr.vertex is not in closed { //avoid duplicates
 add curr.vertex to closed
 for each Vertex w adjacent to curr.vertex // expand node
 queuingFn(open, new Node(w,curr));
 }

}
}

6

Unweighted Shortest Path Problem

n  Unweighted shortest-path problem: Given an
unweighted graph G = (V, E) and a starting vertex
s, find the shortest unweighted path from s to every
other vertex in G.

n  Breadth first search
q  Use FIFO queue
q  Finds shortest path if edges are unweighted (or equal cost)
q  Recover path by backtracking through nodes

7

Breadth-First Example: Queue

v1

v2

v4

v3

v5

∞
node open

∞

∞

∞

∞

v1
0

1 v1

1 v1
v2

v3

2 v2

v4

v1 v2 v3 v4

BFS Traversal

8

DFS Example: Stack

v1

v2

v4

v3

v5

open v1 v2
v3

node v4

v1 v3 v2 v4

DFS Traversal

9

Traversal Performance

n  What is the performance of DF and BF
traversal?

n  Each vertex appears in the stack or queue
exactly once in the worst case. Therefore,
the traversals are at least O(|V|).
However, at each vertex, we must find the
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the
performance of the getAdjacent
operation.

10

GetAdjacent

n  Method 1: Look at every vertex (except u),
asking “are you adjacent to u?”
List<Vertex> L;
for each Vertex v except u

 if (v.isAdjacentTo(u))

 L.push_back(v);

n  Assuming O(1) performance for
isAdjacentTo, then getAdjacent has
O(|V|) performance and traversal
performance is O(|V2|)

11

GetAdjacent (2)
n  Method 2: Look only at the edges which impinge on

u. Therefore, at each vertex, the number of vertices
to be looked at is deg(u), the degree of the vertex

n  For this approach where getAdjacent is O(deg(u)).
The traversal performance is

 since getAdjacent is done O(|V|) times.
n  However, in a disconnected graph, we must still look

at every vertex, so the performance is O(|V| + |E|).

O

0

@
|V |X

i=1

deg(vi)

1

A = O(|E|)

12

Weighted Shortest Path Problem
Single-source shortest-path problem:

 Given as input a weighted graph, G = (V, E), and a
distinguished starting vertex, s, find the shortest weighted
path from s to every other vertex in G.

Dijkstra’s algorithm (also called uniform cost search)

–  Use a priority queue in general search/traversal
–  Keep tentative distance for each vertex giving shortest

path length using vertices visited so far.
–  Record vertex visited before this vertex (to allow

printing of path).
–  At each step choose the vertex with smallest distance

among the unvisited vertices (greedy algorithm).

13

Example Network

v1 v7 v2

v8 v4 v6 v3

v9 v10 v5

1

3

4

3 1

1

2 7

3

4

1

2

5

6

14

Dijkstra’s Algorithm

n  The pseudo code for Dijkstra’s algorithm assumes the
following structure for a Vertex object

class Vertex
{

 public List adj; //Adjacency list

 public boolean known;

 public DisType dist; //DistType is probably int

 public Vertex path;
 //Other fields and methods as needed

}

15

Dijkstra’s Algorithm
void dijksra(Vertex start)
{
 for each Vertex v in V {
 v.dist = Integer.MAX_VALUE;
 v.known = false;
 v.path = null;
 }

 start.distance = 0;

 while there are unknown vertices {
 v = unknown vertex with smallest distance
 v.known = true;
 for each Vertex w adjacent to v
 if (!w.known)
 if (v.dist + weight(v, w)< w.distance){
 decrease(w.dist to v.dist+weight(v, w))
 w.path = v;
 }
 }

}

16

Correctness of Dijkstra’s Algorithm
n  The algorithm is correct because of a property of

shortest paths:
n  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to
vj. Otherwise Pk would not be as short as possible since
Pk extends Pj by just one edge (from vj to vk)

n  Pj must be shorter than Pk (assuming that all edges have
positive weights). So the algorithm must have found Pj
on an earlier iteration than when it found Pk.

n  i.e. Shortest paths can be found by extending earlier
known shortest paths by single edges, which is what the
algorithm does.

17

Running Time of Dijkstra’s Algorithm

n  The running time depends on how the vertices are manipulated.
n  The main ‘while’ loop runs O(|V|) time (once per vertex)
n  Finding the “unknown vertex with smallest distance” (inside the

while loop) can be a simple linear scan of the vertices and so is also
O(|V|). With this method the total running time is O (|V|2). This is
acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|
2)) since it runs in linear time on the number of edges.

n  If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(lg |V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(lg|V|). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is O(|E| lg|V| + |V|lg|V|) = O((|V|+|E|) lg|V|) = O(|E| lg|V|) if all
vertices are reachable from the starting vertex

18

Dijkstra and Negative Edges

n  Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’s algorithm
fails. Why is this so?

n  Suppose a vertex, u, is marked as “known”. This means
that the shortest path from the starting vertex, s, to u has
been found.

n  However, it’s possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

n  Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

19

Directed Acyclic Graphs

n  A directed acyclic graph is a directed graph
with no cycles.

n  A strict partial order R on a set S is a binary
relation such that
q  for all a∈S, aRa is false (irreflexive property)
q  for all a,b,c ∈S, if aRb and bRc then aRc is true

(transitive property)
n  To represent a partial order with a DAG:

q  represent each member of S as a vertex
q  for each pair of vertices (a,b), insert an edge from

a to b if and only if a R b

20

More Definitions

n  Vertex i is a predecessor of vertex j if and only if
there is a path from i to j.

n  Vertex i is an immediate predecessor of vertex
j if and only if (i, j) is an edge in the graph.

n  Vertex j is a successor of vertex i if and only if
there is a path from i to j.

n  Vertex j is an immediate successor of vertex i if
and only if (i, j) is an edge in the graph.

21

Topological Ordering
n  A topological ordering of the vertices of a

DAG G = (V,E) is a linear ordering such that,
for vertices i, j ∈V, if i is a predecessor of j,
then i precedes j in the linear order,
i.e. if there is a path from vi to vj, then vi
comes before vj in the linear order

22

Topological Sort

23

TopSort Example

1

6 7

2

8 9 10

3 4 5

24

Running Time of TopSort

1.  At most, each vertex is enqueued just once, so
there are O(|V|) constant time queue
operations.

2.  The body of the for loop is executed at most
once per edges = O(|E|)

3.  The initialization is proportional to the size of the
graph if adjacency lists are used = O(|E| + |V|)

4.  The total running time is therefore O (|E| + |V|)

