CMSC 380

Graph Traversals and Search

Graph Traversals

Graphs can be traversed breadth-first, depth-
first, or by path length

We need to specifically guard against cycles

o Mark each vertex as “closed” when we encounter
it and do not consider closed vertices again

Queuing Function

Used to maintain a ranked list of nodes that are
candidates for expansion

Substituting different queuing functions yields
different traversals/searches:

o FIFO Queue : breadth first traversal
o LIFO Stack : depth first traversal
o Priority Queue : Dijkstra’s algorithm / uniform cost

Bookkeeping Structures

Typical node structure includes:
o vertex ID

o predecessor node
o path length
o cost of the path

Problem includes:
o graph
o starting vertex

o goalTest(Node n) — tests if node is a goal state (can
be omitted for full graph traversals)

‘ General Graph Search / Traversal

// problem describes the graph, start vertex, and goal test
// queueingfn is a comparator function that ranks two states
// graphSearch returns either a goal node or failure

graphSearch (problem, queuingFn) {
open = {}, closed = {}

queuingFn (open, new Node (problem.startvertex)) //initialize
loop {
if empty (open) then return FAILURE //no nodes remain
curr = removeFront (open) //get current node
1f problem.goalTest (curr.vertex) //optional goaltest
return curr //for search
if curr.vertex is not in closed { //avoid duplicates
add curr.vertex to closed
for each Vertex w adjacent to curr.vertex // expand node

queulingfFn (open, new Node (w,curr));

Unweighted Shortest Path Problem

Unweighted shortest-path problem: Given an
unweighted graph G = (V, E) and a starting vertex
s, find the shortest unweighted path from s to every
other vertex in G.

Breadth first search

o Use FIFO queue

o Finds shortest path if edges are unweighted (or equal cost)
o Recover path by backtracking through nodes

‘ Breadth-First Example: Queue

open node
VIC\ 1“”1 V3

2@1

V5

BFS Traversal
V4@ vl v2 v3 v4

'DFS Example: Stack

Q@

open

v3

@
O

DFS Traversal

V4‘ Vi V3 v2 v4

Traversal Performance

What is the performance of DF and BF
traversal?

Each vertex appears in the stack or queue
exactly once in the worst case. Therefore,
the traversals are at least O(|V]).
However, at each vertex, we must find the
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the
performance of the getAdjacent
operation.

GetAdjacent

Method 1: Look at every vertex (except u),
asking “are you adjacent to u?”

List<Vertex> L;
for each Vertex v except u
1f (v.isAdjacentTo (u))
L.push back(v);

Assuming O(1) performance for
isAdjacentTo, then getAdjacent has
O(|V|) performance and traversal
performance is O([V?])

10

GetAdjacent (2)

Method 2: Look only at the edges which impinge on
u. Therefore, at each vertex, the number of vertices
to be looked at is deg(u), the degree of the vertex

For this approach where getadjacent is O(deg(u)).
The traversal performance is

(i deg(v,) o(|E|)

since getAdjacent is done O(|V|) times.

However, in a disconnected graph, we must still look
at every vertex, so the performance is O(|V| + |E|).

11

Weighted Shortest Path Problem

Single-source shortest-path problem:

Given as input a weighted graph, G=(V, E), and a
distinguished starting vertex, s, find the shortest weighted
path from s to every other vertex in G.

Dijkstra’ s algorithm (also called uniform cost search)
— Use a priority queue in general search/traversal

— Keep tentative distance for each vertex giving shortest
path length using vertices visited so far.

— Record vertex visited before this vertex (to allow
printing of path).

— At each step choose the vertex with smallest distance
among the unvisited vertices (greedy algorithm).

12

Example Network

13

Dijkstra’ s Algorithm

The pseudo code for Dijkstra’ s algorithm assumes the
following structure for a Vertex object

class Vertex

{
public List adj; //Adjacency list
public boolean known;
public DisType dist; //DistType 1s probably int
public Vertex path;
//Other fields and methods as needed

14

Dijkstra’ s Algorithm

void dijksra (Vertex start)
{
for each Vertex v in V {
v.dist = Integer.MAX VALUE;
v.known = false;
v.path = null;

start.distance = 0;

while there are unknown vertices {
v = unknown vertex with smallest distance
v.known = true;
for each Vertex w adjacent to v
if (!w.known)

if (v.dist + weight (v, w)< w.distance) {
decrease (w.dist to v.dist+tweight (v,

w.path = v;

15

W))

Correctness of Dijkstra’ s Algorithm

The algorithm is correct because of a property of
shortest paths:

If Py = vy, Vy, ..., V;, Vy, IS @ shortest path from v, to v,
then P, = vy, v,, ..., v;,, must be a shortest path from v, to
v;. Otherwise P, would not be as short as possible since
P, extends P, by just one edge (from v; to v,)

P, must be shorter than P, (assuming that all edges have

positive weights). So the algorithm must have found P,
on an earlier iteration than when it found P,.

l.e. Shortest paths can be found by extending earlier
known shortest paths by single edges, which is what the
algorithm does.

16

Running Time of Dijkstra’ s Algorithm

The running time depends on how the vertices are manipulated.
The main ‘while’ loop runs O(|V|) time (once per vertex)

Finding the “unknown vertex with smallest distance” (inside the
while loop) can be a simple linear scan of the vertices and so is also
O([V|). With this method the total running time is O (|V|?). This is
acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|
2)) since it runs in linear time on the number of edges.

If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(Ig [V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(Ig|V]). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is O(|[E| Ig|V| + [VIIg|V]) = O((|V[+|E]) lg|V]) = O(|E[Ig|V]) if all
vertices are reachable from the starting vertex

17

Dijkstra and Negative Edges

Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’ s algorithm
fails. Why is this so?

Suppose a vertex, u, is marked as “known”. This means
that the shortest path from the starting vertex, s, to u has
been found.

However, it’ s possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

18

Directed Acyclic Graphs

A directed acyclic graph is a directed graph
with no cycles.

A strict partial order R on a set S is a binary

relation such that

o for all aES, aRa is false (irreflexive property)

o for all a,b,c &S, if aRb and bRc then aRc is true
(transitive property)

To represent a partial order with a DAG:

o represent each member of S as a vertex

o for each pair of vertices (a,b), insert an edge from
atobifandonlyifaRDb

19

More Definitions

Vertex i is a predecessor of vertex | if and only if
there is a path from i toj.

Vertex i is an immediate predecessor of vertex
jifandonlyif (1,])is an edge in the graph.
Vertex j is a successor of vertex i if and only if
there is a path from i to j.

Vertex | is an immediate successor of vertex i if
and only if (i,]) Is an edge in the graph.

20

Topological Ordering

A topological ordering of the vertices of a
DAG G = (V,E) is a linear ordering such that,
for vertices i, | €V, if i Is a predecessor of |,
then | precedes j in the linear order,

i.e. if there is a path from v, to v, then v,
comes before v; in the linear order

O—O—0—0 | |QO_0—O

21

‘ Topological Sort

void topsort() throws CycleFoundException
{
Queue<Vertex> q = new Queue<Vertex>();
int counter = 0;

for each Vertex v
if(v.indegree == 0)
g.enqueue(v);

while(!q.isEmpty())
{

q.dequeue();
++counter; // Assign next number

Vertex v
v.topNum

for each Vertex w adjacent to v
if(--w.indegree == 0)
g.enqueue(w);

if(counter != NUM _VERTICES)
throw new CycleFoundException();

22

TopSort Example

Running Time of TopSort

At most, each vertex is enqueued just once, so
there are O(|V|) constant time queue
operations.

The body of the for loop is executed at most
once per edges = O(|E|)

The initialization is proportional to the size of the
graph if adjacency lists are used = O(|[E| + |V])
The total running time is therefore O ([E| + |V])

24

