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Graph Traversals and Search 
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Graph Traversals 

n  Graphs can be traversed breadth-first, depth-
first, or by path length 

n  We need to specifically guard against cycles 
q  Mark each vertex as “closed” when we encounter 

it and do not consider closed vertices again 



Queuing Function 

n  Used to maintain a ranked list of nodes that are 
candidates for expansion 

n  Substituting different queuing functions yields 
different traversals/searches: 
q  FIFO Queue : breadth first traversal 
q  LIFO Stack : depth first traversal 
q  Priority Queue : Dijkstra’s algorithm / uniform cost 

 



Bookkeeping Structures 
n  Typical node structure includes: 

q  vertex ID 
q  predecessor node 
q  path length 
q  cost of the path 

n  Problem includes: 
q  graph 
q  starting vertex 
q  goalTest(Node n) – tests if node is a goal state (can 

be omitted for full graph traversals) 
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General Graph Search / Traversal 
// problem describes the graph, start vertex, and goal test 
// queueingfn is a comparator function that ranks two states  
// graphSearch returns either a goal node or failure 
 

graphSearch(problem, queuingFn) { 
open = {}, closed = {} 
 

queuingFn(open, new Node(problem.startvertex))  //initialize 
 

loop { 
 if empty(open) then return FAILURE      //no nodes remain 

 

 curr = removeFront(open)       //get current node 
 

 if problem.goalTest(curr.vertex)      //optional goaltest 
    return curr         //for search 

 

 if curr.vertex is not in closed  {      //avoid duplicates 
    add curr.vertex to closed    
    for each Vertex w adjacent to curr.vertex   // expand node 
        queuingFn(open, new Node(w,curr));     
 } 

} 
} 
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Unweighted Shortest Path Problem 

n  Unweighted shortest-path problem: Given an 
unweighted graph G = ( V, E ) and a starting vertex 
s, find the shortest unweighted path from s to every 
other vertex in G.  

n  Breadth first search 
q  Use FIFO queue 
q  Finds shortest path if edges are unweighted (or equal cost) 
q  Recover path by backtracking through nodes 
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Breadth-First Example:  Queue 
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DFS Example:  Stack 
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Traversal Performance 

n  What is the performance of DF and BF 
traversal? 

n  Each vertex appears in the stack or queue 
exactly once in the worst case. Therefore, 
the traversals are at least O( |V| ). 
However, at each vertex, we must find the 
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the 
performance of the getAdjacent 
operation. 
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GetAdjacent 

n  Method 1:  Look at every vertex (except u), 
asking “are you adjacent to u?” 
List<Vertex> L; 
for each Vertex v except u 

 if (v.isAdjacentTo(u)) 

  L.push_back(v); 

 

n  Assuming O(1) performance for 
isAdjacentTo, then getAdjacent has 
O( |V| ) performance and traversal 
performance is O( |V2| ) 
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GetAdjacent (2) 
n  Method 2:  Look only at the edges which impinge on 

u. Therefore, at each vertex, the number of vertices 
to be looked at is deg(u), the degree of the vertex 

n  For this approach where getAdjacent is O( deg( u ) ). 
The traversal performance is  
 

 since getAdjacent is done O( |V| ) times. 
n  However, in a disconnected graph, we must still look 

at every vertex, so the performance is  O( |V| + |E| ). 

O

0

@
|V |X

i=1

deg(vi)

1

A = O(|E|)



12 

Weighted Shortest Path Problem 
Single-source shortest-path problem:  

 Given as input a weighted graph, G = ( V, E ), and a 
distinguished starting vertex, s, find the shortest weighted 
path from s to every other vertex in G. 

 
Dijkstra’s algorithm (also called uniform cost search) 

–  Use a priority queue in general search/traversal 
–  Keep tentative distance for each vertex giving shortest 

path length using vertices visited so far. 
–  Record vertex visited before this vertex (to allow 

printing of path). 
–  At each step choose the vertex with smallest distance 

among the unvisited vertices (greedy algorithm). 
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Example Network 
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Dijkstra’s Algorithm 

n  The pseudo code for Dijkstra’s algorithm assumes the 
following structure for a Vertex object 

 
class Vertex 
{ 

 public List adj;  //Adjacency list 

 public boolean known; 

 public DisType dist;  //DistType is probably int 

 public Vertex path; 
 //Other fields and methods as needed 

} 
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Dijkstra’s Algorithm 
void dijksra(Vertex start) 
{ 
  for each Vertex v in V { 
  v.dist = Integer.MAX_VALUE;  
  v.known = false;  
  v.path = null; 
 } 

 
 start.distance = 0; 

 
 while there are unknown vertices { 
  v = unknown vertex with smallest distance 
  v.known = true; 
  for each Vertex w adjacent to v 
     if (!w.known) 
    if (v.dist + weight(v, w)< w.distance){ 
        decrease(w.dist to v.dist+weight(v, w)) 
     w.path = v; 
    } 
 } 

} 
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Correctness of Dijkstra’s Algorithm 
n  The algorithm is correct because of a property of 

shortest paths:  
n  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,   

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to 
vj. Otherwise Pk would not be as short as possible since 
Pk extends Pj by just one edge (from vj to vk) 

n  Pj must be shorter than Pk (assuming that all edges have 
positive weights). So the algorithm must have found Pj 
on an earlier iteration than when it found Pk.  

n  i.e. Shortest paths can be found by extending earlier 
known shortest paths by single edges, which is what the 
algorithm does.  
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Running Time of Dijkstra’s Algorithm 

n  The running time depends on how the vertices are manipulated. 
n  The main ‘while’ loop runs O( |V| ) time (once per vertex) 
n  Finding the “unknown vertex with smallest distance” (inside the 

while loop) can be a simple linear scan of the vertices and so is also 
O( |V| ).  With this method the total running time is O (|V|2 ).  This is 
acceptable (and perhaps optimal) if the graph is dense ( |E| = O (|V|
2 ) ) since it runs in linear time on the number of edges. 

n  If the graph is sparse, ( |E| = O (|V| ) ), we can use a priority queue 
to select the unknown vertex with smallest distance, using the 
deleteMin operation (O( lg |V| )).  We must also decrease the path 
lengths of some unknown vertices, which is also O( lg|V| ). The 
deleteMin operation is performed for every vertex, and the 
“decrease path length” is performed for every edge, so the running 
time is O( |E| lg|V| + |V|lg|V|) = O( (|V|+|E|) lg|V|) = O(|E| lg|V|) if all 
vertices are reachable from the starting vertex 
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Dijkstra and Negative Edges 

n  Note in the previous discussion, we made the 
assumption that all edges have positive weight.  If any 
edge has a negative weight, then Dijkstra’s algorithm 
fails.  Why is this so? 

n  Suppose a vertex, u, is marked as “known”.  This means 
that the shortest path from the starting vertex, s, to u has 
been found. 

n  However, it’s possible that there is negatively weighted 
edge from an unknown vertex, v, back to u.  In that case, 
taking the path from s to v to u is actually shorter than 
the path from s to u without going through v. 

n  Other algorithms exist that handle edges with negative 
weights for weighted shortest-path problem. 
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Directed Acyclic Graphs 

n  A directed acyclic graph is a directed graph 
with no cycles. 

n  A strict partial order R on a set S is a binary 
relation such that  
q  for all a∈S, aRa is false (irreflexive property) 
q  for all a,b,c ∈S, if aRb and bRc then aRc is true 

(transitive property) 
n  To represent a partial order with a DAG: 

q  represent each member of S as a vertex 
q  for each pair of vertices (a,b), insert an edge from 

a to b if and only if a R b 
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More Definitions 

n  Vertex i is a predecessor of vertex j if and only if 
there is a path from i to j. 

n  Vertex i is an immediate predecessor of vertex 
j if and only if ( i, j ) is an edge in the graph. 

n  Vertex j is a successor of vertex i if and only if 
there is a path from i to j. 

n  Vertex j is an immediate successor of vertex i if 
and only if ( i, j ) is an edge in the graph. 



21 

Topological Ordering 
n  A topological ordering of the vertices of a 

DAG G = (V,E) is a linear ordering such that, 
for vertices i, j ∈V, if i is a predecessor of j, 
then i precedes j in the linear order, 
i.e. if there is a path from vi to vj, then vi 
comes before vj in the linear order 
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Topological Sort 
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TopSort Example 
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Running Time of TopSort 

1.  At most, each vertex is enqueued just once, so 
there are O(|V| ) constant time queue 
operations. 

2.  The body of the for loop is executed at most 
once per edges = O( |E| ) 

3.  The initialization is proportional to the size of the 
graph if adjacency lists are used  = O( |E| + |V| ) 

4.  The total running time is therefore O ( |E| + |V| ) 
 


