Introduction to
Network Analysis

Some materials adapted from Lada Adamic, UMichigan



Outline

the role of networks in life, nature, and research

why model networks: structure & dynamics
® models (structure):
Erdos-Renyi random graph
Watts-Strogatz small world model
Barabasi-Albert scale-free networks
®m implications (dynamics):
diffusion of disease and information

search by navigating the network
resilience

IR applications



What are networks?

Networks are collections of
points joined by lines.

“Network” = “Graph”

\ / - node
/ .— edge
points lines
vertices | edges, arcs math
nodes links computer science
sites bonds physics

actors ties, relations | sociology



examples: terrorist networks
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examples: online social networks

Friendster

o Tl W e "Vizster: Visualizing Online Social

' Networks." Jeffrey Heer and danah
boyd. IEEE Symposium on
Information Visualization (

InfoViz 2005).




examples: Networks of personal homepages

Stanford MIT

homophily: what attributes are predictive of friendship?
group cohesion

Source: Lada A. Adamic and Eytan Adar, ‘Friends and neighbors on the web’, Social Networks, 25(3):211-230, July
2003.



examples: internet

Source: Bill Cheswick http://www.cheswick.com/ches/map/gallery/index.html



examples: airline networks
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examples: railway networks
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other examples, e.g. natural language processing

Wordnet
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examples: gene regulatory networks

gene regulatory networks
® humans have only 30,000 genes, 98% shared with chimps
®m the complexity is in the interaction of genes
®m can we predict what result of the inhibition of one gene will be?
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Source: http://www.zaik.uni-koeln.de/bioinformatik/regulatorynets.html.en



examples: metabolic networks

Citric acid cycle

Metabolites
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chemical reactions

Source: undetermined

To Glycolysis

People

i[ NAD+ NADHHZC,E;O_ZHCL_{—LHC .

f

Glycolysis

To Glycolysis
' Yeast
NAD+

ethanol

Lactate k NAD*, CoA .
o, [Pyruvate Dehydrogenase] (Ca?)
NADH AGPe<0 (NADH)
Oxaloacetate JOL -
Jate Os OH L .,COA {PFK,
{d’::ydrogenasaj I He'\ s” CoA Citrate ;i1 ate synthase}
AGO=+29 kM O ~OH
(aG= UkJ/M [citrate synthase] —C-COOH
ucs X
T p6e= AT kM )\ faconitase]
Malate NADH 0% “OH
0% “OH )
isocitrate
[Fumarase}/ m
~C~COOH
0, H
! Fumarate
0O OH
{Isocit.
oj‘OH FADH,  gehya) co,
ATP
NADH
o */ R
h
dei ydrogenase} (o (NADID
AGo= .21 kdM

oH (!C._coo
Succinate io *
OiSCoA

succinyl-CoA
{Citrate dehydrogenase]

Chemical change & this location

[] This group is transferred or lost
at the next step. Lost/altered atoms  Synthase}

[succinyt CoA
synthetase]

indicated with above yellow box
Key: {Feedbackiproduct Inhibition} (Activation) (Inhibition)

i i o-ketoglutarate

[a- ketoglurarete

(Ca2*) (NADH)
AGP= -33 kM



Campaign Contributions from Oil Companies
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Biochemical pathways (Roche)
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Creating a network from a surface

Sample points from the surface

Connect each point to the k closest points as measured
by Euclidean distance

dist(a,b) = \[(a,~b,)* +(a, - b)) +(a,~b.)’

¥ o




Creating a network from data

Medical Patients

Name |Age|Weight{Height| HR |SBP DBP|SpO,| ...
D. Johnson| 32 | 153 70 (82134 | 72 | 98% | ...
S. Knell 47 | 169 65 (130|169 | 93 | 99% | ...
P. Bryne 42 | 128 61 [102]| 129 | 77 | 98% | ...
A. Amit 39 | 191 68 [121| 143 | 92 | 96% | ...

\

.) Measure the distance S.Vega M. Sa
between pairs 0.92

D. Johnson
dist(a,b) = JE w(a - b)

S. Knell

0.1
2.) Connect each patient to

: : P. Bryne
its k nearest neighbors g

N. Patters



Creating a network from data

Medical Patients

Name |Age|Weight{Height| HR |SBP DBP|SpO,| ...
D. Johnson| 32 | 153 70 (82134 | 72 | 98% | ...
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Graph partitioning

Goal: Partition the graph into multiple groups (clusters)

Find the two clusters

|dentify the
different parts
of the rabbit
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modeling networks: random networks

Nodes connected at random

Number of edges incident on each node is Poisson
distributed

Poisson distribution

P(k)

<k>




Erdos-Renyi random graphs

What happens to the size of the giant component as the
density of the network increases?
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http://ccl.northwestern.edu/netlogo/models/run.cgi?GiantComponent.884.534




modeling networks: small worlds

Small worlds

m a friend of a friend is also
frequently a friend

®m but only six hops separate any
two people in the world

Arnold S. — thomashawk, Flickr;
http://creativecommons.org/licenses/by-nc/2.0/deed.en



Small world models

Duncan Watts and Steven Strogatz

®m a few random links in an otherwise structured graph make the
network a small world: the average shortest path is short

Bnew
A A
B
regular lattice: small world: random graph:
my friend’ s friend is mostly structured all connections
always my friend with a few random random
connections

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world’' networks. Nature 393:440-442.



Watts Strogatz Small World Model

As you rewire more and more of the links and random,
what happens to the clustering coefficient and average

shortest path relative to their values for the regular
lattice?

http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldWS .html




SIS models and small worlds

SIS model: nodes return to “susceptible” state after
being infected

What is the role of random shortcuts in diffusion?

S tickssil
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http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldWS .html




number of nodes with so many edges

A

modeling networks: power law networks

Many real world networks contain hubs: highly
connected nodes

Usually the distribution of edges is extremely skewed

many nodes with few edges

fat tail: a few nodes with a very large number
of edges

n

number of edges

no “typical” number of edges



network growth & resulting structure

random attachment: new node picks any existing node to
attach to

preferential attachment: new node picks from existing
nodes according to their degrees

http://projects.si.umich.edu/netlearn/NetLogo4/RAndPrefAttachment.html




What implications does this have?

Robustness

Search

Spread of disease

Opinion formation

Spread of computer viruses
Gossip



How do we search?

Mary

Who could
introduce me tQ
Richard Gere?

Bob

A
Richard Gere — spaceodissey, Flickr; http://creativecommons.org/licenses/by/2.0/deed.en

Friends collage — luc, Flickr; http://creativecommons.org/licenses/by/2.0/deed.en




power-law graph










But are especially vulnerable to targeted attack

Targeting and removing hubs can quickly break up the network



In social networks, it' s nice to be a hub




( But it depends on what you' re sharing...




The role of hubs in epidemics

In a power-law network, a virus can persist no matter
how low its infectiousness

Many real world networks do exhibit power-laws:
® needle sharing
® sexual contacts
® email networks



Spread of computer viruses
can be affected by the
underlying network




S| models & network structure

Will random or preferential attachment lead to faster
diffusion?

random growth preferential growth

http://projects.si.umich.edu/netlearn/NetLogo4/BADiffusion.html




resilience:
power grids and cascading failures

Vast system of electricity generation, transmission & distribution is
essentially o
a single network A
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(flow calculations are AN "
important for other networks, £ =

.-

even social ones) A )

All AC lines within an A
interconnect must be in sync  transmission gris

Source. FEVA -

If frequency varies too much (as line approaches capacity), a circuit
breaker takes the generator out of the system

Larger flows are sent to neighboring parts of the grid — triggering a
cascading failure

Source: .wikipedia.org/wiki/File:UnitedStatesPowerGrid.jpg



Cascading failures

1:58 p.m. The Eastlake, Ohio, First Energy
generating plant shuts down (malntenance
problems).

3:06 p.m. A First Energy 345-kV transmission line
fails south of Cleveland, Ohio.

3:17 p.m. Voltage dips temporarily on the Ohio
portion of the grid. Controllers take no action, but
power shifted by the first failure onto another
power line causes it to sag into a tree at 3:32
p.m., bringing it offline as well. While Mid West
ISO and First Energy controllers try to understand
the failures, they fail to inform system controllers
in nearby states.

3:41 and 3:46 p.m. Two breakers connecting
First Energy’ s grid with American Electric Power
are tripped.

4:05 p.m. A sustained power surge on some Ohio
lines signals more trouble building.

4:09:02 p.m. Voltage sags deeply as Ohio draws
2 GW of power from Michigan.

4:10:34 p.m. Many transmission lines trip out,
first in Michigan and then in Ohio, blocking the
eastward flow of power. Generators go down,
creating a huge power deficit. In seconds, power
surges out of the East, tripping East coast
generators to protect them.

Source: Eric J. Lerner, “What's wrong with the electric grid?” http://www.aip.org/tip/INPHFA/vol-9/iss-5/p8.html



(dis) information cascades

Rumor spreading
Urban legends

Word of mouth
(movies, products)

Web is self-
correcting:

m Satellite image hoax
is first passed
around, then
exposed, hoax fact is

s A 45 e
blogged about, then 23 EST 14 Aug. 2003

written up on
urbanlegends.about.com Source: undetermined




Actual satellite images of the effect of the blackout

20 hours 7 hours
prior to after
blackout blackout

Source: NOAA, U.S. Government



IR applications: online info retrieval

It's in the links:
B links to URLs can be interpreted as endorsements or
recommendations

®m the more links a URL receives, the more likely it is to be a good/
entertaining/provocative/authoritative/interesting information

source
® but not all link sources are created equal
a link from a respected information source
a link from a page created by a spammer

an important page, e.g. slashdot

Many webpages scattered

/ across the web

if a web page is
slashdotted, it gains attention



Ranking pages by tracking a drunk

A random walker following edges in a network for a very
long time will spend a proportion of time at each node
which can be used as a measure of
Importance |

Various eigenvalue metrics
yield variations of

Importance measures



Wrap up

networks are everywhere and can be used to describe
many, many systems

by modeling networks we can start to understand their
properties and the implications those properties have for
processes occurring on the network



