Computational Geometry

Summary

Basic problems

- · Point location
- · Line segment intersection
- Robustness and degeneracies
- Efficiency via data structure
- Geometric data structures: geometric search trees

Compiler Design

- · Loop optimization
- View the set of all executions of a statement within n loops as a set of integer points on an n-dimensional polytope defined by loop constraints

Orthogonal Range Searching

- Database queries and geometry?
 - report all points whose coordinates fall between certain ranges

Arrangements and Duality

· Raytracing and super-sampling

• Discrepancy: The difference between the sampled set (hits) and the visible object within the pixel area

Binary Space Partitioning

- · Visibility preprocessing
- Recursively splitting the plane with lines
 - binary tree
 - stops when only one object is in each region

Mesh Generation

· Circuit board design

Quadtree

• Recursively subdivide into 4 squares
— stop when each cell only contains one point

Manifold Learning

- The curse of dimensionality
- Distribution of natural/physical data is likely not uniform: concentrates around lowdimensional structures
- Machine learning: find a function that fits the data to some manifold
- Geometry: recover the manifold from sampled points