## **Computational Geometry**

Shortest Paths Geodesics



# Polyhedra without Nets



#### **Shortest Path**

- A shortest path on P between two points x and y on P is a curve connecting x and y whose length, measured on the surface, is shortest among all curves connecting those points on P.
  - Shortest paths do not self-intersect
  - Shortest paths do not pass through vertices
  - A shortest path passing through an edge will be unfolded straight.

#### 2x1x1 Box



#### 100 Vertices









# **Star Unfolding**

- The star unfolding of a convex polyhedron P fixes a generic point x on P, finds the shortest paths from x to every vertex of P, and simply cuts along these shortest paths.
- The star unfolding is a simple (nonoverlapping) polygon with 2*n* vertices. Furthermore, the Voronoi diagram of the *n* copies of the source *x* is the unfolding of the cut locus *C*(*x*) on *P*.







## **Open Questions**

- Does every convex polyhedron have a net?
- Does every polyhedron have a general net?

#### Geodesic

- A geodesic on a surface is a curve γ with the property that for any two sufficiently close points x and y on γ, the portion of γ between x and y is the shortest path on the surface connecting x and y.
- Every shortest path is a geodesic.
- Geodesics are locally shortest paths.



# Quasigeodesics

 There are at least three simple closed geodesics on any surface homeomorphic to a sphere.





