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Computa.onal	
  Geometry	
  

Polyhedra	
  

Convexity	
  

Platonic	
  Solids	
   All	
  Combina.ons	
  of	
  k	
  and	
  m	
  

Name	
   k-­‐gon	
   m	
   (k-­‐2)(m-­‐2)	
   V	
   E	
   F	
  
Tetrahedron	
   3	
   3	
   1	
   4	
   6	
   4	
  

Cube	
   4	
   3	
   2	
   8	
   12	
   6	
  
Octahedron	
   3	
   4	
   2	
   6	
   12	
   8	
  

Dodecahedron	
   5	
   3	
   3	
   20	
   30	
   12	
  
Icosahedron	
   3	
   5	
   3	
   12	
   30	
   20	
  

Loosely-­‐Regular	
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Higher	
  Dimensions	
   Polyhedron	
  Defini.on	
  

•  Intersec.on	
  condi.on:	
  The	
  intersec.on	
  of	
  any	
  
two	
  faces	
  of	
  P	
  is	
  either	
  empty,	
  a	
  single	
  vertex	
  
or	
  a	
  single	
  edge	
  

•  Local	
  topology:	
  Every	
  point	
  p	
  on	
  the	
  surface	
  of	
  
P	
  has	
  a	
  neighborhood	
  that	
  is	
  homeomorphic	
  
to	
  an	
  open	
  disk	
  

•  Global	
  topology:	
  P	
  is	
  connected	
  –	
  a	
  path	
  exists	
  
on	
  the	
  surface	
  between	
  any	
  two	
  points.	
  

Polyhedra	
   A	
  Polyhedron	
  of	
  Genus	
  4	
  

Viola.on	
  of	
  Local	
  Topology	
   Euler’s	
  Formula	
  Revisited	
  

•  For	
  any	
  polyhedron	
  homeomorphic	
  to	
  a	
  sphere	
  
with	
  V	
  ver.ces,	
  E	
  edges	
  and	
  F	
  faces,	
  V-­‐E+F	
  =	
  2.	
  

•  Proof	
  
– convert	
  the	
  1-­‐skeleton	
  of	
  the	
  polyhedron	
  to	
  a	
  
planar	
  graph	
  G	
  

– select	
  a	
  spanning	
  tree	
  T	
  of	
  G	
  
– construct	
  the	
  dual	
  graph	
  G*	
  of	
  G	
  
–  iden.fy	
  the	
  complementary	
  spanning	
  tree	
  T*	
  in	
  G*	
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Euler’s	
  Formula	
  Proof	
  

•  A	
  tree	
  with	
  n	
  ver.ces	
  has	
  exactly	
  n-­‐1	
  edges.	
  

Generaliza.on	
  of	
  Euler’s	
  Formula	
  

•  For	
  a	
  triangulated	
  surface	
  S	
  with	
  V	
  ver.ces,	
  E	
  
edges	
  and	
  F	
  faces,	
  the	
  Euler	
  characteris.cs	
  
χ(S)	
  of	
  S	
  is	
  V-­‐E+F	
  	
  

•  χ(S)	
  =	
  2-­‐2g,	
  where	
  g	
  is	
  the	
  genus,	
  if	
  S	
  is	
  
orientable.	
  

•  χ(S)	
  =	
  2-­‐k,	
  where	
  k	
  is	
  the	
  number	
  of	
  handles,	
  if	
  
S	
  is	
  non-­‐orientable.	
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Klein	
  Boble	
  as	
  Twisted	
  Double	
  Tube	
   Figure-­‐8	
  Immersion	
  

As	
  a	
  One-­‐Parameter	
  Family	
  of	
  Circles	
  

Figure 4. The Klein bottle as a one-parameter
family of circles (H. B. Lawson): the top sequence
shows four coordinate views; the larger images
show that the surface is the union of two
Möbius bands glued along their circular borders,
colored in red, which pass through each other
along the green circle. The red and green circles
lie on the surface but do not belong to the
family that generates the surface itself; both
meet the generating family orthogonally.

the Klein bottle, some of which have never been

depicted before.

Simple Equations for the Klein Bottle

This section recalls the parametrization and the

resulting graphic images of two of the immersions

of K in R3 which we called canonical at the begin-

ning of the article, due respectively to T. Banchoff

and to B. Lawson:

(1)

BanchoffBottle(u, v) :














x = (a+ cos( u2 ) sinv − sin( u2 ) sin(2v) cosu,

y = (a+ cos( u2 ) sinv − sin( u2 ) sin(2v) sinu,

z = sin( u2 ) sinv + cos( u2 ) sin(2v),

(2)

LawsonBottle(u, v) :






















































x = cos2u sinv/

(1− (sinu cosu + sin 2u sinv)/
√

2),

y = (sin 2u sinv − sinu cosv)/
√

2(1− (sinu cosu + sin 2u sinv)/
√

2),

z = cosu cosv/

(1− (sinu cosu + sin 2u sinv)/
√

2).

Figure 5. The same Klein bottle of previous
image, cut in a different way. The part around
the self-intersection circle is made of two
Möbius bands. Cutting them away, the remaining
portion of the surface is orientable, so it is
possible to give its faces two different colors.

Some Classical-Looking Klein Bottles

In this section we recall some formulas and images
of the Klein bottle in its classical shape, already
mentioned in the chronological list. Some of them
give the desired surface as the union of two or more
pieces; some others have complicated expression,
far from the shortness and the elegance of (1)
and (2). The first one was created in 1994 by
D. Cervone in answer to a scenario proposed
by T. Banchoff: take a Bernoulli lemniscate and
use half of it as the directrix for a tube and
the other half as the generatrix for a revolution
surface. Figure 6 shows how the construction is
carried out. The union of the two pieces, which
meet tangentwise, is a very effective and beautiful
model of the bottle and fits perfectly with the
description given by Klein. Its parametrization is
also very simple. Now, before going on with the
other two models of the classical bottle, due to
S. Dickson and M. Trott, respectively, we will recall
the basic technique of generating a tube around
a curve. Let α(t) = (x(t), y(t)), t ∈ [a, b], be a
curve lying on the xy -plane satisfying ‖α′(t)‖ ≠ 0.
Let k = (0,0,1) be the z-axis unit vector and

T = α′

‖α′‖ be the unit tangent vector field of α(t).

Let N = k ∧ T. Then the couple of unit vectors
(N,k) is a moving frame orthogonal to α′(t) and
can be used to construct a tube around α(t) as
follows:
(3)

tube(t,θ) = α(t)+ r(t)
(

cosθ N+ sinθ k
)

,

(t,θ) ∈ [a, b]× [0,2π],

where the scalar continuous function r(t) gives
the radius of the tube. Note that, in this definition,
N is not the standard unit normal to the curveα(t),
which would point to the center of the osculating
circle of α(t), because it would not be defined at
the points where the curvature of α(t) vanishes.

The first model of the Klein bottle as a tube
around a curve (in fact, the union of two distinct
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3D	
  Printed	
  	
  

Figure 12. Photos of 3D printed models of three
versions of the Klein bottle made by a Z-Printer

Z310 Plus (material: plaster). Top left: Klein
bottle according to parametrization (9)–(10); top
right: Klein bottle according to parametrization

(1); bottom left: Klein bottle cut in two parts,
according to parametrization (2); bottom right:
one half of the same surface, cut in such a way

that each of the two halves is a Möbius band
with circular border; some circular arcs lying on

the surface itself are highlighted. (Models and
pictures were created by the author.)

immersions of the bottle in the shape outlined by
Klein in 1882, with a reasonably good appearance.
They are suitable to make computer plots and,
after generating a solid shell around them, to be
used as an input dataset on 3D printing systems.
The mathematical expression of both is still com-
plicated and far from the elegance of versions like
(1) and (2). They are intended to be a midstep
towards an immersion of the Klein bottle in R3

which we would like to call canonical from both a
mathematical and a historical point of view.
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