

Name	<i>k</i> -gon	m	(k-2)(m-2)	v	Е	F
Tetrahedron	3	3	1	4	6	4
Cube	4	3	2	8	12	6
Octahedron	3	4	2	6	12	8
Dodecahedron	5	3	3	20	30	12
Icosahedron	3	5	3	12	30	20

- Local topology: Every point p on the surface of P has a neighborhood that is homeomorphic
- to an open disk
 Global topology: P is connected a path exists on the surface between any two points.

Generalization of Euler's Formula

- For a triangulated surface S with V vertices, E edges and F faces, the Euler characteristics χ(S) of S is V-E+F
- $\chi(S) = 2-2g$, where g is the genus, if S is orientable.
- $\chi(S) = 2-k$, where k is the number of handles, if S is non-orientable.

