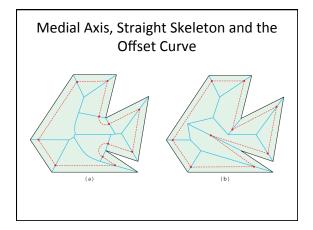
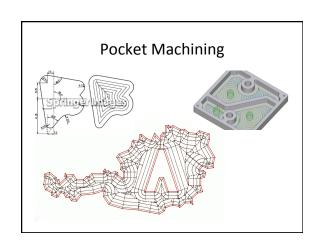
Computational Geometry

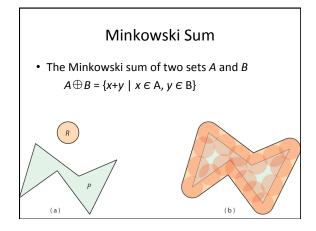
Minkowski Sums

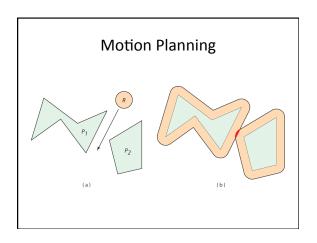
Offset Curve

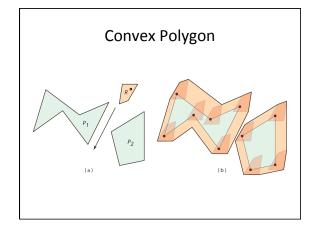
- Given a smooth curve *C*, the offset curve is the locus of points offset by a constant distance *r* along the curve normal.
- The offset curve can also be defined as the envelope of a family of disks of radius *r* whose centers lie on *C*.





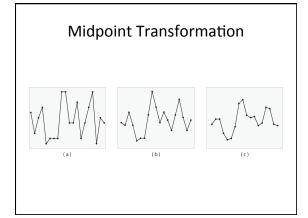


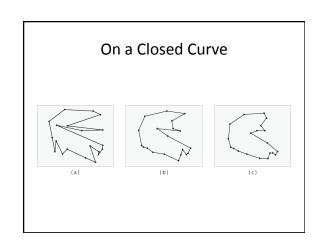




Computational Geometry

Curve Shortening





Curve Evolution

- Let C(s) = (x(s), y(s)) be a smooth closed curve parameterized by arc length s.
- Add a time variable t, defining a curve C(s, t).
 The curve evolves with t according to the differential equation:

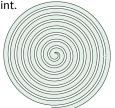
 $\partial C/\partial t = \partial^2 C/\partial s^2 = K\eta$

Curve Shortening Theorem

- Every smooth, simple closed curve C evolves under the flow defined by the equation so that it remains simple for all time and converges to a round point.
- Convexifies without

self-intersection

- twisted curve
- spiral
- <u>flower</u>

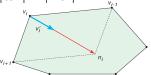


Discrete Flow

- Replace n-sided polygon P with its midpoint transformation
- Approximate normal at $v_{\rm i}$ as

$$n_i = (v_{i+1} - v_i) + (v_{i-1} - v_i)$$

• Move vertex v_i to $v'_i = v_i + \delta n_i$

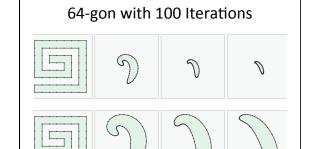


Discrete Curve Shortening

 Every simple polygon evolves under the flow so that it converges to a point whose shape is asymptotically an affine transformation of a

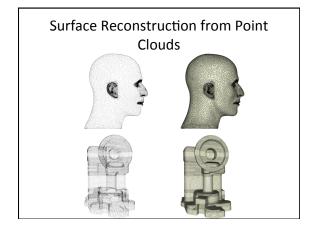
regular polygon.

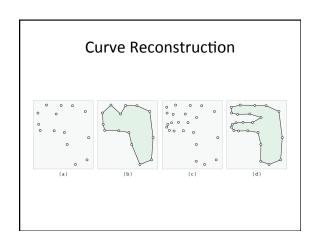




Computational Geometry

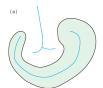
Curve Reconstruction

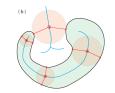




Local Feature Size

Let C be a smooth closed curve and let x be a
point on C. The local feature size ρ(x) of x is
the shortest distance from x to the medial axis
of C.





ε-sample

- Let $0 < \varepsilon < 1$. A set S of points sampled from C is an ε -sample if each point x in C has point p in S such that $|x-p| \le \varepsilon \rho(x)$.
- Forces sample to be dense in complicated sections of *C*.

the CRUST Algorithm

- The correct edges are a subset of Del(S).
- For sufficiently small ε
 - The Voronoi vertices V of Vor(S) lie near M(C)
 - Any circumscribing circle of an incorrect edge of Del(S) crosses the medial axis M(C)
 - An incorrect edge e of Del(S) cannot also appear in Del(S U V) because a circumscribing circle for e contains a vertex in V.
 - Each correct edge of Del(S) also appears in Del(S U V)

