Computational Geometry

Voronoi Diagrams, Delaunay Triangulations, and Convex Hull

Convexity of the Voronoi Regions

• Heavily dependent on distance metric

Spider Web

Giraffe

3D

- Nature by Numbers
- Animated 3D Voronoi

Lemma • Let A and B be two circles with chords that properly cross. Then at least one endpoints of one circle's chord is strictly inside the other circle.

Theorem

- The straight-line dual graph of Vor(S) is planar
- The straight-line dual graph of *Vor(S)* is a triangulation of *S* when *S* is in general position.
- The dual triangulation of *Vor(S)* is the Delaunay triangulation of *S*.

Delaunay and Convex Hull

- Lift sites to a paraboloid $(z = x^2 + y^2)$
- Compute 3D convex hull of points
- Project lower hull faces back to plane

Theorem

- Given a point set S in the plane, the Delaunay triangulation Del(S) is exactly the projection to the xy-plane of the lower convex hull of the points (x, y, x^2+y^2) .
- applet

Proof

- Tangent plane to the paraboloid at (a, b, a²+b²)
 - take derivatives of $z = x^2 + y^2$
 - $\delta z/\delta x = 2x \Rightarrow (2a)$
 - $\delta z/\delta y = 2y \Rightarrow (2b)$
 - plane equation : $z = 2ax + 2by (a^2+b^2)$
- Shift plane upwards in Z+ by r^2
 - $-z = 2ax + 2by (a^2+b^2) + r^2$
- · Find intersection with the paraboloid

Proof

 A lower face f on the convex hull projects to a triangle with a circumcircle of radius r. Since f is on the lower hull, all other sites lie above (>r w.r.t. plane of tangency), and thus project outside of the circle, which then satisfies the empty circle property.

Notes

 If the tangent planes are also constructed and their intersections projected, it's the Voronoi diagram

Notes

- Compute Delaunay by computing 3D convex hull instead $O(n\log n)$
- The relationship holds in higher dimensions as well, thus Delaunay tetrahedralizations are typically constructed by constructing 4D convex hulls.