Computational Geometry

Delaunay and Other Special Triangulations

Lifting the Triangles

Skinny is Bad

Angle Sequence

- Let T be a triangulation of a point set S, and suppose T has n triangles. The angle sequence {a₁, a₂, ..., a_n} lists all 3n angles of T in sorted order.
- A triangulation T_1 is fatter than T_2 ($T_1 > T_2$) if the angle sequence of T_1 is lexicographically greater than T_2 's.
 - $-\{20^{\circ}, 30^{\circ}, 45^{\circ}, 65^{\circ}, 120^{\circ}\} > \{20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 120^{\circ}\}$

Delaunay Triangulation

- For each convex quad in a triangulation T_1 with diagonal e, if a diagonal flip results in a triangulation T_2 , s.t. $T_1 \ge T_2$, then e is legal.
- A Delaunay triangulation is a triangulation with all legal edges.

Theorem

- For point set *S*, a minimum spanning tree of *S* is a subset of the Delaunay triangulation of *S*.
- Proof by contradiction.

