Computational Geometry Triangulation

Definition • A triangulation of a planar point set S is a subdivision of the plane determined by a maximal set of noncrossing edges whose vertex set is S.

Theorem

• Let *S* be a point set with *h* points on the hull and *k* in the interior. If all points are in general position, then any triangulation of *S* has exactly 2*k*+*h*-2 triangles and 3*k*+2*h*-1 edges.

Definition

 For a point set S, a flip graph of S is a graph whose nodes are the set of triangulations of S.
 Two nodes T₁ and T₂ are connected by an edge if one diagonal of T₁ can be flipped to obtain T₂.

Flipping a Star

Theorem

- The flip graph of any planar point set is connected.
- The *diameter* of a graph is the longest path between any two nodes of the graph, in number of edges.
- For a planar point set *S* of *n* points, the diameter of its flip graph is at most (*n*-2)(*n*-3)

3D

 Let S be a point set in R³ in general position, with k points in the interior and h on the hull.
 Then there exists a tetrahedralization of S with at most 3k+2h-7 tetrahedra.

Associahedra in Higher Dimensions

• There exists a convex *n*-dimensional polytope called the associahedron whose vertices and edges form the flip graph of a convex (*n*+3)-sided polygon. The *k*-dimensional faces of this polytope are in one-to-one correspondence with the diagonalization of the polygon using exactly *n-k* diagonals.

4D Associahedron Representing the Flip Graph of a Heptagon

Sum of Area of Triangles around a Vertex in a Triangulation

- Area Vectors
 - Left: (1, 12, 3, 1, 7, 10, 1, 7)
 - Middle: (3, 1, 7, 7, 6, 4, 1, 13)
 - Right: (1, 7, 1, 9, 6, 4, 1, 13)

Theorem

 If P is a convex polygon with n vertices, the convex hull of the area vectors of all triangulations of P is combinatorially equivalent to the associahedron of dimension n-3.