
2/28/13	
  

1	
  

Computa.onal	
  Geometry	
  

Review	
  

Polygons	
  

•  Every	
  polygon	
  admits	
  a	
  triangula.on.	
  
•  Every	
  triangula.on	
  of	
  a	
  polygon	
  with	
  n	
  
ver.ces	
  has	
  n-­‐2	
  triangles	
  and	
  n-­‐3	
  diagonals.	
  

•  Every	
  polygon	
  with	
  n>3	
  ver.ces	
  has	
  at	
  least	
  
two	
  ears.	
  	
  

•  ⎣n/3⎦	
  vertex	
  guards	
  are	
  necessary	
  and	
  
sufficient	
  to	
  guard	
  a	
  polygon	
  with	
  n	
  ver.ces	
  

Area	
  of	
  Polygons	
  

•  The	
  cross	
  product	
  and	
  the	
  area	
  of	
  triangle.	
  
•  Generaliza.on	
  to	
  arbitrary	
  polygons:	
  

•  The	
  number	
  of	
  triangula.ons	
  of	
  a	
  convex	
  
polygon	
  with	
  n+2	
  ver.ces	
  is	
  the	
  Catalan	
  
number	
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Dissec.ons	
  

•  Any	
  two	
  polygons	
  of	
  the	
  same	
  area	
  are	
  
scissors	
  congruent.	
  

•  Any	
  two	
  polyhedra	
  with	
  the	
  same	
  Dehn	
  
invariant	
  are	
  scissors	
  congruent.	
  

Tetrahedraliza.on	
  of	
  Cube	
  

4 CHAPTER 1. POLYGONS

? Exercise 1.25. Classify the set of triangulations on the boundary of the cube that

“induce” tetrahedralizations of the cube, where each such tetrahedralization matches

the triangulation on the cube surface.

Choose 3 faces of the cube that share a vertex. Any choice of triangula-

tions of these three squares induces a tetrahedralization of the cube and

forces triangulations of all other faces. The one exception is the unique

triangulation without the long diagonal.

? Exercise 1.26. Show that the n-dimensional cube can be triangulated into exactly n!

simplices.

[Exercise due to Je↵ Erickson.] Draw the long diagonal and see the action

by the symmetric group Sn on each chamber.

Exercise 1.27. For each polygon in Figure 1.8, find the minimum number of guards

needed to cover it.

Answers: (a) 3 (b) 1 (c) 1 (d) 2.

Exercise 1.28. Suppose that guards themselves block visibility so that a line of sight

from one guard cannot pass through the position of another. Are there polygons for

which the minimum of our more powerful guards needed is strictly less than the mini-

mum needed for these weaker guards?

No, because the line of sight can be picked up by the blocking guard.

Triangula.ons	
  of	
  Polygons	
  with	
  
Holes	
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Solutions to the Midterm Sample Problems

Solution 1:

(a) The factor 12 comes from the product of 4 and 3. The probability that a trapezoid is destroyed
in the ith insertion is 4/i, since each trapezoid is defined by at most four segments. When a
trapezoid is destroyed, its leaf node is replaced by a search subtree of depth at most 3.

(b) The fact that ! intersects the triangle means that it lies above at least one point and below
at least one. In the dual plane, this means that point !∗ lies in the region between the upper
and lower envelopes of the three dual lines (see Fig. 1).

!
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c

primal a∗

b∗
c∗

!∗

dual

Figure 1: Solution 1(b). (Figure is not drawn to scale.)

(c) The point d lies in the interior of the triangle a, b, c if and only if Orient(a, b, d), Orient(b, c, d)
and Orient(c, a, d) are all positive.

(d) Observe that through the introduction of h narrow “corridors,” each consisting of two parallel
edges, we can connect the holes (directly or indirectly) to the exterior boundary, resulting in
a simple polygon without holes and with n+ hk + 2h edges (see Fig. 2). In class we showed
that any simple polygon with m sides has m− 2 triangles. Therefore, we can triangulate this
polygon with n+ hk + 2h− 2 triangles.

Figure 2: Solution 1(d).

(e) Excluding the leftmost trapezoid, charge each trapezoid to its leftmost vertex or intersection
point. Each of the n segment left endpoints will be charged by two trapezoids (one above
right and one below right), each of the n segment right endpoints will be charged by one
trapezoid (to its right), and each of the I intersection points is charged by three trapezoids
(above, middle, and below right). The total number of charges is 3n + 3I. Adding in the
leftmost trapezoid implies that the total number is 3(n+ I) + 1.
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Guarding	
  the	
  Walls	
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Exercise 1.29. Prove that any quadrilateral needs only one guard to cover it. Then

prove that any pentagon needs only one guard to cover it.

This can be proven easily by a case analysis.

Exercise 1.30. Modify Lemma 1.18 to show that one guard placed anywhere in a

convex polygon can cover it.

Easy.

Exercise 1.31. Construct a polygon P and a placement of guards such that the guards

see every point of @P but P is not covered.

This is Figure 1.4 in [O’R87]. Also known as “Godfried’s favorite polygon”

after Godfried Toussaint.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of guards that

cover it.

Answers: (a) 3 (b) 5 (c) 3.

Exercise 1.34. Construct a polygon with n = 3k vertices such that placing a guard at

every third vertex fails to protect the gallery.

See Figure 3.6 of [Mic09].

Exercise 1.35. Why is it not possible to easily extend Fisk’s proof above to the case

of polygons with holes?

The triangulations can no longer be 3-colored; 4 colors are often needed.

Counter	
  Example	
  

a
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Figure 2: Solution to 4(b).

Clearly, the most even split arises by adding one of the three diagonals (a, b), (b, c), or (c, a). No matter
which we add, one of the subpolygons that results will contain at most !n/3"+ 1 vertices. Given any
c > 1/3, we can make n large enough such that !n/3"+1 < cn. In particular, if we express c = ε+1/3,
for some ε > 0, it is easy to verify that this will hold for all n > 2/ε. Setting n to this value in the
above construction yields the desired counterexample.

Solution to the Challenge Problem: Parts (a) and (b) can be solved by a variant of plane-sweep. Here
is a very quick sketch (with no justifications). The key is that, since the turning number is bounded, there
cannot be more than O(1) segments that intersect the sweep line at any time. Therefore, sweep line status
operations can be performed in O(1) time each. Another important element is constraining the number of
events that need to be sorted. We distinguish three types of vertices. Start vertices are those where both
incident edges lie to the right of the sweep line, end vertices are those where both incident edges are to the
left, and middle vertices are those where there is one edge on each side. Due to the turning constraint, it can
be shown that there are only O(1) start vertices, and these are the only events that need to be presorted.
When we arrive at a start vertex, we add it to the sweep-line status in O(1) time. Whenever we arrive at a
middle vertex, we simply replace one edge in the sweep-line status with the other, and we schedule an event
for the right endpoint of the new segment. When we reach an end vertex, we remove both entries from the
sweep-line status. Since there are only O(1) entries in the sweep-line status, the next event can be extracted
in O(1) time. As soon as an intersection is detected, we terminate. Therefore, there are at most n events,
each of which can be processed in O(1) time.

Part (c) is tougher. I had devised many solutions. This one is the simplest I came up with. The approach
is incremental, adding the segments one-by-one, and checking for self intersections with each addition. To
make it easier to check for intersections, a spatial subdivision is constructed simultaneously. The subdivision
acts as a sort of “scaffold” to add structure to segments. As segments are added, this scaffold is updated.
A possible subdivision to use would be a triangulation, but instead, I opted for an alternative subdivision
based on trapezoids. As soon as an intersection is detected, the algorithm terminates.

The scaffold structure is called a trapezoidal map. (We will study this later in the semester, but the
concept is simple enough to describe here.) First off, we enclose the polygonal curve in a bounding rectangle
(see Fig. 3(a)). This rectangle can be computed in O(n) time, by computing the maximum and minimum
x- and y-coordinates of the vertices. The subdivision is defined as follows. Imagine shooting a bullet path
both vertically upwards and downwards from each vertex of the polygonal chain, until it either hits another
edge of the chain or an edge of the bounding rectangle (see Fig. 3(a)). The edges and bullet paths, define
a subdivision of the rectangle into regions, each of which is a trapezoid with vertical sides (which may
degenerate into a triangle in some cases). The vertical sides are called walls.

The subdivision is computed incrementally as follows. The initial subdivision consists of the bounding
rectangle. We then “trace” the polygonal chain through the existing subdivision. As we walk along each
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Hinged	
  Dissec.ons	
  

•  Dissec.ons	
  with	
  an	
  addi.onal	
  constraint:	
  the	
  
polygonal	
  pieces	
  must	
  be	
  hinged	
  together	
  at	
  
ver.ces	
  into	
  a	
  connected	
  assembly.	
  

Figure 1: 4-piece dissection of Greek cross to square from 1890 [Lem90].

in the worst case: dissecting a polygon of diameter x > 1 into a polygon of diameter 1 (for example,
a long skinny triangle into an equilateral triangle) requires at least dxe pieces.

With this worst-case result in hand, attention has turned to optimal dissections using the fewest
pieces possible for the two given polygons. This problem has been studied extensively for centuries in
the mathematics literature [Oza78, Coh75, Fre97] and the puzzle literature [Pan49, Lem90, Mad79,
Lin72], and more recently in the computational geometry literature [CKU99, KKU00, ANN+03].

Hinged dissections are dissections with an additional constraint: the polygonal pieces must
be hinged together at vertices into a connected assembly. The first published hinged dissection
appeared in 1864, illustrating Euclid’s Proposition I.47 [Kel64]; see [Fre02, pp. 4–5]. The most
famous hinged dissection is Dudeney’s 1902 hinged dissection [Dud02]; see Figure 2. This surprising
construction inspired many to investigate hinged dissections; see, for example, Frederickson’s book
on the topic [Fre02].

However, the fundamental problem of general hinged dissection has remained open [DMO03,
O’R02]: do every two polygons of the same area have a common hinged dissection? This problem
has been attacked in the computational geometry literature [AN98, DDE+05, Epp01, DDLS05] but
has only been solved in special cases. For example, all polygons made from edge-to-edge gluings of n
identical subpolygons (such as polyominoes) have been shown to have a common hinged dissection
[DDE+05]. Perhaps most intriguingly, Eppstein [Epp01] showed that the problem of finding a
common hinged dissection of any two triangles of equal area is just as hard as the general problem.

Figure 2: Dudeney’s 1902 hinged dissection of a square into a triangle [Dud02].

Hinged dissections are particularly exciting from the perspectives of reconfigurable robotics,
programmable matter, and nanomanufacturing. Recent progress has enabled chemists to build
millimeter-scale “self-working” 2D hinged dissections such as Dudeney’s [MTW+02]. An analog for
3D hinged dissections may enable the building of a complex 3D structure out of a chain of units;
see [Gri04] for one such approach. We could even envision an object that can re-assemble itself
into di↵erent 3D structures on demand [DDLS05]. This approach contrasts existing approaches to
reconfigurable robotics (see, for example, [RBKV02]), where units must reconfigure by attaching
and detaching from each other through a complicated mechanism.
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Hinged	
  Triangle-­‐Rectangle	
  

point furthest along � and making each subsequent chain longer so that, when the subtree A had
been moved, the chain at b0 could fill in the empty space left by A’s kite sweep.

In order to avoid modifying A, however, we will instead cut the kite sweep out of (the free
region at) (B, b0), connecting it to the base point a. Then, when A has reached the destination
point, there is an empty kite sweep at the source point b that needs to be filled in (rather than at
a, as before). We therefore reverse the direction of the boundary kite chains, so that they connect
to the earliest point along �, with the shortest chain at the end of � and preceding chains growing
longer so that the largest chain connects to b and can fill in the empty region left by the kite sweep.

Proof of Lemma 14. We modify the proof of Lemma 5 as follows. First, in Step 2, we re-attach
the removed triangle chains by hinging its first (rather than final) vertex to the first (rather than
last) vertex of Sj . Second, also in Step 2, for each 1  j  s � 1, we cut a triangle sweep
C+

�,0(`(Ss), `(Ss�1), . . . , `(Si+1)) (rather than for 2  j  s cutting C+
�,0(`(S1), `(S2), . . . , `(Si�1))).

Finally, in Step 3, we cut the triangle sweep in the free region in Lb
i (rather than La

i ), so it does not
modify the subtree being moved. With these substitutions, the remainder of the proof proceeds
unchanged from that of Lemma 5. Figure 11 shows an example of these modifications.

5.4 Triangle to Rectangle

The classic construction for general (unhinged) dissections by Lowry [Low14, Fre97] reduces the
problem of triangle-to-triangle dissection to that of rectangle-to-rectangle dissection by converting
each triangle into a rectangle. In fact, this classical three-piece dissection can be hinged, as we now
illustrate.

Lemma 15. There is a three-piece hinged dissection from any triangle to some rectangle.

Proof. See Figure 12. Define the base of a triangle to be the side opposite the obtuse angle, if there
is one, or else any side of the triangle. Cut parallel to the base at half the height of the triangle.
Cut perpendicular from this line to the apex of the triangle (opposite the base). Hinge the two
triangular pieces at the boundary points so that they rotate down to fill a rectangle of half the
height of the triangle.

Figure 12: Three-piece hinged dissection of any triangle into some rectangle.

5.5 Rectangle to Rectangle

Next we describe a pseudopolynomial hinged dissection between any two rectangles of equal area.
Roughly speaking, we start with the classic (unhinged) dissection of Montucla [Oza78, Fre97], which

22

Dissec.on	
  Paradox	
   64	
  =	
  65?	
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93+103=123?	
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Fermat’s Theorem Contradicted? :

93 + 103 = 123 ??

From Dissections: Plane & Fancy, by Greg Frederickson,
Cambridge University Press, to be published October 1997.

See http://www.cs.purdue.edu/homes/gnf/book.html

Box	
  to	
  Cube	
  


