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Figure 1.1. (a) A polygon. (b)–(d) Objects that are not polygons.

circumstances (such as in Chapter 2) it will be useful to recognize “flat
vertices.” The set of vertices and edges of P is called the boundary of
the polygon, denoted as ∂P. Figure 1.1(a) shows a polygon with nine
edges joined at nine vertices. Diagrams (b)–(d) show objects that fail to
be polygons.

The fundamental “Jordan curve theorem,” formulated and proved by
Camille Jordan in 1882, is notorious for being both obvious and difficult
to prove in its full generality. For polygons, however, the proof is easier,
and we sketch the main idea.

Theorem 1.1 (Polygonal Jordan Curve). The boundary ∂P of a polygon
P partitions the plane into two parts. In particular, the two compo-
nents of R2 \∂P are the bounded interior and the unbounded exterior.2

Sketch of Proof. Let P be a polygon in the plane. We first choose a fixed
direction in the plane that is not parallel to any edge of P. This is
always possible because P has a finite number of edges. Then any point
x in the plane not on ∂P falls into one of two sets:

1. The ray through x in the fixed direction crosses ∂P an even number
of times: x is exterior. Here a ray through a vertex is not counted as
crossing ∂P.

2. The ray through x in the fixed direction crosses ∂P an odd number of
times: x is interior.

Notice that all points on a line segment that do not intersect ∂P must
lie in the same set. Thus the even sets and the odd sets are connected.
And moreover, if there is a path between points in different sets, then
this path must intersect ∂P.

This proof sketch is the basis for an algorithm for deciding whether a
given point is inside a polygon, a low-level task that is encountered every
time a user clicks inside some region in a computer game, and in many
other applications.

2 The symbol ‘\’ indicates set subtraction: A\ B is the set of points in A but not in B.

Jordan	  Curve	  Theorem	  

•  The	  boundary	  δP	  of	  a	  polygon	  P	  par..ons	  the	  
plane	  into	  two	  parts.	  

Diagonal	  
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Figure 1.2. (a) A polygon with (b) a diagonal; (c) a line segment; (d) crossing
diagonals.

Exercise 1.2. Flesh out the proof of Theorem 1.1 by supplying arguments
to (a) justify the claim that if there is a path between the even- and
odd-crossings sets, the path must cross ∂P; and (b) establish that for
two points in the same set, there is a path connecting them that does
not cross ∂P.

Algorithms often need to break polygons into pieces for processing. A
natural decomposition of a polygon P into simpler pieces is achieved by
drawing diagonals. A diagonal of a polygon is a line segment connecting
two vertices of P and lying in the interior of P, not touching ∂P except
at its endpoints. Two diagonals are noncrossing if they share no interior
points. Figure 1.2 shows (a) a polygon, (b) a diagonal, (c) a line segment
that is not a diagonal, and (d) two crossing diagonals.

Definition. A triangulation of a polygon P is a decomposition of P into
triangles by a maximal set of noncrossing diagonals.

Here maximal means that no further diagonal may be added to the
set without crossing (sharing an interior point with) one already in
the set. Figure 1.3 shows a polygon with three different triangulations.
Triangulations lead to several natural questions. How many different
triangulations does a given polygon have? How many triangles are
in each triangulation of a given polygon? Is it even true that every
polygon always has a triangulation? Must every polygon have at least
one diagonal? We start with the last question.

Figure 1.3. A polygon and three possible triangulations.

Triangula.on	  

•  A	  triangula.on	  of	  a	  polygon	  is	  a	  
decomposi.on	  into	  triangles	  with	  maximal	  
non-‐crossing	  diagonals.	  
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Existence	  of	  a	  Diagonal	  

•  Every	  polygon	  with	  n>3	  ver.ces	  has	  a	  
diagonal.	  
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Figure 1.4. Finding a diagonal of a polygon through sweeping.

Lemma 1.3. Every polygon with more than three vertices has a diagonal.

Proof. Let v be the lowest vertex of P; if there are several, let v be the
rightmost. Let a and b be the two neighboring vertices to v. If the
segment ab lies in P and does not otherwise touch ∂P, it is a diagonal.
Otherwise, since P has more than three vertices, the closed triangle
formed by a, b, and v contains at least one vertex of P. Let L be a
line parallel to segment ab passing through v. Sweep this line from
v parallel to itself upward toward ab; see Figure 1.4. Let x be the
first vertex in the closed triangle abv, different from a, b, or v, that L
meets along this sweep. The (shaded) triangular region of the polygon
below line L and above v is empty of vertices of P. Because vx cannot
intersect ∂P except at v and x, we see that vx is a diagonal.

Since we can decompose any polygon (with more than three vertices)
into two smaller polygons using a diagonal, induction leads to the
existence of a triangulation.

Theorem 1.4. Every polygon has a triangulation.

Proof. We prove this by induction on the number of vertices n of the
polygon P. If n = 3, then P is a triangle and we are finished. Let n > 3
and assume the theorem is true for all polygons with fewer than n
vertices. Using Lemma 1.3, find a diagonal cutting P into polygons P1
and P2. Because both P1 and P2 have fewer vertices than n, P1 and P2
can be triangulated by the induction hypothesis. By the Jordan curve
theorem (Theorem 1.1), the interior of P1 is in the exterior of P2, and
so no triangles of P1 will overlap with those of P2. A similar statement
holds for the triangles of P2. Thus P has a triangulation as well.

Exercise 1.5. Prove that every polygonal region with polygonal holes,
such as Figure 1.1(d), admits a triangulation of its interior.
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Theorem	  

•  Every	  polygon	  admits	  a	  triangula.on.	  
•  Proof	  by	  strong	  induc.on	  
•  Every	  triangula.on	  of	  a	  polygon	  P	  with	  n	  
ver.ces	  has	  n-‐2	  triangles	  and	  n-‐3	  diagonals.	  

Meister’s	  Two	  Ears	  

•  Three	  consecu.ve	  ver.ces	  a,	  b	  and	  c	  on	  the	  
boundary	  of	  a	  polygon	  form	  an	  ear	  if	  ac	  is	  a	  
diagonal.	  b	  is	  known	  as	  an	  ear	  .p.	  

•  Every	  polygon	  with	  n>3	  ver.ces	  has	  at	  least	  
two	  ears.	  

Polyhedra	  
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Figure 1.5. Polyhedra: (a) tetrahedron, (b) pyramid with square base, (c) cube, and
(d) triangular prism.

That every polygon has a triangulation is a fundamental property that
pervades discrete geometry and will be used over and over again in this
book. It is remarkable that this notion does not generalize smoothly to
three dimensions. A polyhedron is the 3D version of a polygon, a 3D solid
bounded by finitely many polygons. Chapter 6 will define polyhedra more
precisely and explore them more thoroughly. Here we rely on intuition.
Figure 1.5 gives examples of polyhedra.

Just as the simplest polygon is the triangle, the simplest polyhedron
is the tetrahedron: a pyramid with a triangular base. We can generalize
the 2D notion of polygon triangulation to 3D: a tetrahedralization
of a polyhedron is a partition of its interior into tetrahedra whose
edges are diagonals of the polyhedron. Figure 1.6 shows examples of
tetrahedralizations of the polyhedra just illustrated.

Exercise 1.6. Find a tetrahedralization of the cube into five tetrahedra.

We proved in Theorem 1.4 that all polygons can be triangulated.
Does the analogous claim hold for polyhedra: can all polyhedra be

Figure 1.6. Tetrahedralizations of the polyhedra from Figure 1.5.

Tetrahedraliza.on	  
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Schönhardt	  Polyheron	  

6 CHAPTER 1. POLYGONS

P

Q

B

R

CA

P

Q

R

B

CA

P

Q

R

B

CA

P

Q

R

B

C

A

Figure 1.7. Construction of the Schönhardt polyhedron from a triangular prism,
where (d) is the overhead view.

tetrahedralized? In 1911, Nels Lennes proved the surprising theorem that
this is not so. We construct an example of a polyhedron, based on the
1928 model by Erich Schönhardt, which cannot be tetrahedralized. Let
A, B,C be vertices of an equilateral triangle (labeled counterclockwise) in
the xy-plane. Translating this triangle vertically along the z-axis reaching
z = 1 traces out a triangular prism, as shown in Figure 1.7(a). Part
(b) shows the prism with the faces partitioned by the diagonal edges
AQ, BR, and CP. Now twist the top PQR triangle π/6 degrees in the
(z = 1)-plane, rotating and stretching the diagonal edges. The result is
the Schönhardt polyhedron, shown in (c) and in an overhead view in (d)
of the figure. Schönhardt proved that this is the smallest example of an
untetrahedralizable polyhedron.

Exercise 1.7. Prove that the Schönhardt polyhedron cannot be
tetrahedralized.

UNSOLVED PROBLEM 1 Tetrahedralizable Polyhedra

Find characteristics that determine whether or not a polyhedron is
tetrahedralizable. Even identifying a large natural class of tetrahe-
dralizable polyhedra would be interesting.

This is indeed a difficult problem. It was proved by Jim Ruppert and
Raimund Seidel in 1992 that it is NP-complete to determine whether a
polyhedron is tetrahedralizable. NP-complete is a technical term from
complexity theory that means, roughly, an intractable algorithmic prob-
lem. (See the Appendix for a more thorough explanation.) It suggests
in this case that there is almost certainly no succinct characterization of
tetrahedralizability.

Open	  Problem	  

•  Determining	  whether	  a	  polyhedron	  is	  
tetrahedralizable	  is	  NP-‐complete	  (1992).	  	  

•  Iden.fying	  a	  large	  natural	  class	  of	  
tetrahedralizable	  polyhedra?	  
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The	  Art	  Gallery	  Problem	  

•  Polygon	  models	  the	  floor	  plan	  
•  Guards	  are	  sta.onary	  and	  have	  360°	  visibility	  
unless	  blocked	  by	  walls	  

•  What	  is	  the	  minimum	  number	  of	  guards	  
needed	  to	  cover	  an	  
arbitrary	  polygon	  of	  n	  	  
ver.ces?	  

Visibility	  

•  Ver.ces	  do	  not	  block	  vision	  
•  xy∈P	  → x	  sees	  y	  
14 CHAPTER 1. POLYGONS

Figure 1.12. Examples of the range of visibility available to certain placement of
guards.

A point x in polygon P is visible to point y in P if the line segment xy
lies in P. This definition allows the line of sight to have a grazing contact
with the boundary ∂P (unlike the definition for diagonal). A set of guards
covers a polygon if every point in the polygon is visible to some guard.
Figure 1.12 gives three examples of the range of visibility available to
single guards in polygons.

A natural question is to ask for the minimum number of guards
needed to cover polygons. Of course, this minimum number depends on
the “complexity” of the polygon in some way. We choose to measure
complexity in terms of the number of vertices of the polygon. But two
polygons with n vertices can require different numbers of guards to cover
them. Thus we look for a bound that is good for any polygon with n
vertices.3

Exercise 1.27. For each polygon in Figure 1.8, find the minimum number
of guards needed to cover it.

Exercise 1.28. Suppose that guards themselves block visibility so that
a line of sight from one guard cannot pass through the position of
another. Are there are polygons for which the minimum of our more
powerful guards needed is strictly less than the minimum needed for
these weaker guards?

Let’s start by looking at some examples for small values of n.
Figure 1.13 shows examples of covering guard placements for polygons
with a small number of vertices. Clearly, any triangle only needs one
guard to cover it. A little experimentation shows that the first time two
guards are needed is for certain kinds of hexagons.

Exercise 1.29. Prove that any quadrilateral needs only one guard to cover
it. Then prove that any pentagon needs only one guard to cover it.

3 To find the minimum number of guards for a particular polygon turns out to be, in general,
an intractable algorithmic task. This is an instance of another NP-complete problem; see the
Appendix.

Examples	  
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Figure 1.13. Examples of guard placements for different polygons.

Exercise 1.30. Modify Lemma 1.18 to show that one guard placed
anywhere in a convex polygon can cover it.

By the previous exercise, convex polygons need only one guard for
coverage. The converse of this statement is not true, however. There
are polygons that need only one guard but which are not convex. These
polygons are called star polygons. Figure 1.8(c) is an example of a star
polygon.

While correct placement avoids the need for a second guard for
quadrilaterals and pentagons, one can begin to see how reflex vertices
will cause problems in polygons with large numbers of vertices. Because
there can exist only so many reflex angles in a polygon, we can construct a
useful example, based on prongs. Figure 1.14 illustrates the comb-shaped
design made of 5 prongs and 15 vertices. We can see that a comb of
n prongs has 3n vertices, and since each prong needs its own guard,
then at least !n/3" guards are needed. Here the symbols ! " indicate
the floor function: the largest integer less than or equal to the enclosed
argument.4 Thus we have a lower bound on Klee’s problem: !n/3" guards
are sometimes necessary.

Figure 1.14. A comb-shaped example.

4 Later we will use its cousin, the ceiling function # $, the smallest integer greater than or equal
to the argument.

The	  Necessity	  of	  ⎣n/3⎦	  

•  The	  comb	  
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The	  Sufficiency	  of	  ⎣n/3⎦	  

•  Fisk’s	  1978	  proof	  is	  based	  on	  triangula.on	  and	  
graph	  coloring	  

•  A	  coloring	  of	  a	  graph	  is	  an	  assignment	  of	  
colors	  to	  nodes	  so	  that	  no	  adjacent	  nodes	  
have	  the	  same	  color	   1.3 THE ART GALLERY THEOREM 17

Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.

Every	  Triangula.on	  Can	  be	  3-‐colored	  
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3D	  Art	  Gallery	  

•  Arbitrary	  polyhedra	  can	  not	  always	  be	  
tetrahedralized.	  

•  The	  Seidel	  polyhedron	  that	  requires	  >n	  guards	  
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Figure 1.17. (a) The Seidel polyhedron with (b) three faces removed to reveal the
interior.

Exercise 1.43. Prove the above claim, which implies that guards at every
vertex of the Seidel polyhedron do not cover the entire interior. Notice
that this implies the Seidel polyhedron is not tetrahedralizable.

Exercise 1.44. Let n be the number of vertices of the Seidel polyhedron.
What order of magnitude, as a function of n, is the number of
guards needed to cover the entire interior of the polyhedron? (See the
Appendix for the ! notation that captures this notion of “order of
magnitude” precisely.)

1.4 SCISSORS CONGRUENCE IN 2D

The crucial tool we have employed so far is the triangulation of a polygon
P by its diagonals. The quantities that have interested us have been
combinatorial: the number of edges of P and the number of triangles
in a triangulation of P. Now we loosen the restriction of only cutting P
along diagonals, permitting arbitrary straight cuts. The focus will move
from combinatorial regularity to simply preserving the area.

A dissection of a polygon P cuts P into a finite number of smaller
polygons. Triangulation can be viewed as an especially constrained form
of dissection. The first three diagrams in Figure 1.18 show dissections of
a square. Part (d) is not a dissection because one of the partition pieces is
not a polygon.

Given a dissection of a polygon P, we can rearrange its smaller
polygonal pieces to create a new polygon Qof the same area. We say two

Open	  Problems	  

•  Edge	  guards:	  ⎣n/4⎦?	  
•  Mirror	  walls	  


