
cs380
Dec 10

Student Presentations
Lagging SQL

Lagging SQL
• Problem: how do you show the difference between two records

• or simply how to you show parts of two “consecutive” records on the same line

• First problem — define consecutive

• Second problem — recognize consecutiveness

• Third problem — actually use 1 and 2.

The launch table
of the rocket database

• Question: how many days between
launches

• at a site?

• of a vehicle?

• If I can do one, the other is easy

• 1: consecutive=next launch at same
site (order by launchsite, date)

describe launch;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
Tag	varchar(10)	NO	PRI	NULL	
JD	varchar(12)	NO	PRI	NULL	
Date	date	YES		NULL	
Vehicle	varchar(20)	YES	MUL	NULL	
Flight	varchar(20)	YES		NULL	
Mission	varchar(30)	YES		NULL	
LaunchSite	varchar(10)	YES	MUL	NULL	
LaunchPad	varchar(10)	YES		NULL	
Apogee	mediumint(9)	YES		NULL	
Category	varchar(10)	YES		NULL	
+------------+--------------+------+-----+---------+-------+
10 rows in set (0.001 sec)

select tag, date, vehicle, flight, launchsite from launch limit 2;
+----------+------------+---------+--------+------------+
| tag | date | vehicle | flight | launchsite |
+----------+------------+---------+--------+------------+
| 1942-A01 | 1942-06-13 | A-4 | 2 | HVP |
| 1942-A02 | 1942-08-16 | A-4 | 3 | HVP |
+----------+------------+---------+--------+------------+
2 rows in set (0.001 sec)

Consecutive records

• So getting a listing of consecutive records is
easy enough.

• Problem how to identify them

• Even if there is an integer index

• it may not be for the order you want

• It cold have gaps

• Create an incrementing variable and increment
it in the query.

• watch for resetting the value!

• watch for when the value increments too

select date, launchsite from launch order by launchsite,date limit 5;
+------------+------------+
| date | launchsite |
+------------+------------+
1959-06-29	ABER
1959-07-07	ABER
1959-10-22	ABER
1960-01-02	ABER
1960-01-07	ABER
+——————+------------+

set @rowa:=0;
select date, launchsite, (@rowa:=@rowa+1) as rowid from launch
 order by launchsite,date limit 5;
+------------+------------+-------+
| date | launchsite | rowid |
+------------+------------+-------+
1959-06-29	ABER	1
1959-07-07	ABER	2
1959-10-22	ABER	3
1960-01-02	ABER	4
1960-01-07	ABER	5
+------------+------------+-------+
5 rows in set (0.027 sec)

select date, launchsite, (@rowa:=@rowa+1) as rowid from launch
 order by launchsite,date limit 5;
+------------+------------+-------+
| date | launchsite | rowid |
+------------+------------+-------+
1959-06-29	ABER	6
1959-07-07	ABER	7
1959-10-22	ABER	8
1960-01-02	ABER	9
1960-01-07	ABER	10
+------------+------------+-------+
5 rows in set (0.027 sec)

Idea: self join!

• Create a set that I want (use with).

• Join it to itself!

• Almost, but the value of num
incremented

• With acts like a store procedure so it
only gets expanded when required.

• It is required twice!

• So the value of row is computed
twice.

• Cannot reset to zero every time
• (maybe could but I do not know how)

with xx(date, site, num) as (select date, launchsite, (@row:=@row+1) from launch
 order by launchsite,date limit 3)
 select * from xx
 join xx as zz on xx.site=zz.site;

date site num date site num
1959-06-29 ABER 1 1959-10-22 ABER 6
1959-06-29 ABER 1 1959-07-07 ABER 5
1959-06-29 ABER 1 1959-06-29 ABER 4
1959-07-07 ABER 2 1959-10-22 ABER 6
1959-07-07 ABER 2 1959-07-07 ABER 5
1959-07-07 ABER 2 1959-06-29 ABER 4
1959-10-22 ABER 3 1959-10-22 ABER 6
1959-10-22 ABER 3 1959-07-07 ABER 5
1959-10-22 ABER 3 1959-06-29 ABER 4

http://xx.site
http://zz.site

Make two explicit subsets
• Need another variable but otherwise easy.

• That works
• Now to get that offset

• Just subtract 1

• Small(ish) problem efficiency
• get rid of “limit 3”
• On 66000 records this takes 18 seconds!

• Theory: string comparisons are slow
• eliminate “xx.site=zz.site" from join

• 160 seconds
• String comp is not issue!

• Theory: “row” comparison is the issue
• Without row comparison the join creates a lot of rows

• next page
• replace “row” comparison with date comparison

• 1.6 seconds
• Theory: subtraction in join is the issue

• without subtraction 0.8 seconds!
• Subtraction was the whole point!

set @row=0;
set @rowy=0;
with xx(date, site, num) as (select date, launchsite, (@row:=@row+1)
 from launch order by launchsite,date limit 3),
 zz(date, site, num) as (select date, launchsite, (@rowy:=@rowy+1)
 from launch order by launchsite,date limit 3)
 select xx.site, xx.date, zz.date, xx.num, zz.num, datediff(zz.date,xx.date) from xx
 join zz on xx.site=zz.site and xx.num=zz.num;

site date date num num datediff(zz.date,xx.date)
ABER 1959-06-29 1959-06-29 1 1 0
ABER 1959-07-07 1959-07-07 2 2 0
ABER 1959-10-22 1959-10-22 3 3 0

set @row=0;
set @rowy=0;
with xx(date, site, num) as (select date, launchsite, (@row:=@row+1)
 from launch order by launchsite,date limit 3),
 zz(date, site, num) as (select date, launchsite, (@rowy:=@rowy+1)
 from launch order by launchsite,date limit 3)
 select xx.site, xx.date, zz.date, xx.num, zz.num, datediff(zz.date,xx.date) from xx
 join zz on xx.site=zz.site and xx.num=zz.num-1;

site date date num num datediff(zz.date,xx.date)
ABER 1959-06-29 1959-07-07 1 2 8
ABER 1959-07-07 1959-10-22 2 3 107

http://xx.site
http://zz.site

How many rows?

• Each of the xx and zz sets contains
63688 rows

• so max rows from join is 636882

• 4056161344

• This would happen if only 1 site

• Actual number is sum of square of
number at each site.

• How to do this using only sql????
• Honestly, I would be very tempted to use python and sql….

 # This join will create a LOT of rows — but how many
select xx.site, xx.date, zz.date, xx.num, zz.num,
 datediff(zz.date,xx.date) from xx
 join zz on xx.site=zz.site;

number of rows in the table
select count(*) from launch;
 63688

This is the max possible
select count(*) * count(*) from launch;
 4056161344

#Now to compute actual number
aa query gets the count at each site
bb adds everything up, but has a lot of rows
final select just uses the max from bb
set @qq:=0;
set @rr:=0;
with aa(cc) as (select count(*) from launch group by launchsite),
 bb(mm,nn,oo) as (select cc, @rr:=@rr+cc, @qq:=@qq+cc*cc from aa)
 select max(oo), max(oo)/(max(nn)*max(nn)) from bb;

max(oo) max(oo)/(max(nn)*max(nn))
168112092 0.0414

This is a actual number of rows
that the query would create

About 4% of the possible so
still better than cross-product

http://xx.site
http://zz.site

Row numbering by group
Previous slide just got total in group

• sql has a “rank” function which
should do much the same thing,

• it is unreliable/useless

• My tests, the total is correct
but replications along the way

set @pname:='xxxx';
set @rank:=1;
select launchsite,
 @rank:=if(@pname=launchsite, @rank+1,
 if(@pname:=launchsite,1,1))
 from launch
 order by launchsite, date;
…
YSNYA 84
YSNYA 85
YSNYA 86
YUK 1
YUMA 1
YUMA 2
YUMA 3
YUMA 4
YUMA 5
…

Equivalent to above, just avoids separate “set”
select launchsite,
 @rank:=if(@pname=launchsite, @rank+1,
 if(@pname:=launchsite,1,1))
 from launch as ll,
 (select @pname:='yweruiyw') as pp,
 (select @rank:=1) as rr
 order by launchsite limit 10;

Naming required when there is
more than one part of “from”

Doing full cross-product, but
there is only one row in two of

these

Efficiency
• Just start one counter before the

other!

• several possibly slow operations

• two selects

• join

• Flexible — easily change offset

• Awkward — requires two separate
selects

• Readable

set @row=0;
set @rowy=-1;
with xx(date, site, num) as (select date, launchsite, (@row:=@row+1)
 from launch order by launchsite,date limit 3),
 zz(date, site, num) as (select date, launchsite, (@rowy:=@rowy+1)
 from launch order by launchsite,date limit 3)
 select xx.site, xx.date, zz.date, xx.num, zz.num, datediff(zz.date,xx.date) from xx
 join zz on xx.site=zz.site and xx.num=zz.num;

site date date num num datediff(zz.date,xx.date)
ABER 1959-06-29 1959-07-07 1 2 8
ABER 1959-07-07 1959-10-22 2 3 107

Use lagging variables

• Idea use variables that hold the value from the prior
row

• Note that @psite is “reported” before it is updated
• same for @pdate

• Fast: less than 40% time of previous
• Awkward:

• lag of 1 is OK.
• 2 would be bad, 5 awful

• Undefined
• mysql does not guarantee the order of

evaluations in select

set @psite='xgxgxg';
set @pdate=curdate();
with aa(psite, site, pdate, date) as
 (select @psite, @psite:=launchsite, @pdate, @pdate:=date
 from launch order by launchsite, date)
 select site, date, pdate, datediff(date, pdate) from aa where site=psite;

site date pdate datediff(date, pdate)
ABER 1959-07-07 1959-06-29 8
ABER 1959-10-22 1959-07-07 107
ABER 1960-01-02 1959-10-22 72

Use lag function

• LAG(XXX,n) OVER (PARTITION BY yyy ORDER
BY zzz)

• XXX==the column to lag

• n==the amount of lag

• over — set conditions on lag

• PARTITION BY yyy

• grouping

• order by zzz

• sorting

• In prior queries we got partition by and order
by using 2 keys on “order by”.

• LAG is independent of “order by”

select launchsite, date, datediff(date, lag(date,1)
 over (partition by launchsite order by date))
 from launch
 order by launchsite,date

launchsite date diff
ABER 1959-06-29 NULL
ABER 1959-07-07 8
ABER 1959-10-22 107

with aa(site, date, diff) as (
 select launchsite, date,
 datediff(date, lag(date,1) over (partition by launchsite order by date))
 from launch order by launchsite,date limit 3
)
 select * from aa where diff is not NULL;
launchsite date diff
ABER 1959-07-07 8
ABER 1959-10-22 107

