Student Presentations

CCCCC

Lagging SQL

Problem: how do you show the difference between two records

 or simply how to you show parts of two “consecutive” records on the same line

First problem — define consecutive
Second problem — recognize consecutiveness

Third problem — actually use 1 and 2.

The launch table

of the rocket database

describe launch;

———————————— f——————————— t——— +———— p——————— t———— +
. Field Type Null | Key | Default Extra

* Question: how many days between b L — e b +
1 11 Tag varcwarél@% NO PRI | NULL
JD varchar(12 NO PRI NULL
aUncnes Date date YES NULL
Vehicle varcwaréZQ; YES MUL | NULL
° 1te?) Flight varchar(20 YES NULL
at a site: Mission varchar(30) YES NULL
LaunchSite varcwarél@% YES MUL | NULL
o ‘). LaunchPad varchar(10 YES NULL
Of d Vehlde' Apogee mediumint(9) | YES NULL
Category varchar(10) YES NULL

———————————— F——————————— t———— +———— t——————— t———— +

10 rows in set (0.001 sec)

. select tag, date, vehicle, flight, launchsite from launch limit 2;
* If I can do one, the other is easy PO P o AT bt A
tag date vehicle | flight launchsite
+—— +—— +—— +—— +—— +
1942-A01 1942-06-13 | A-4 2 HVP
1942-A02 1942-08-16 | A-4 3 HVP
. +—— +—— +—— +—— +—— +
* 1: consecutive=next launch at same 2 rows in set (0.001 sec)

site (order by launchsite, date)

select date, launchsite from launch order by launchsite,date limit 5;

e —————— e —————— +
° | date | launchsite |
Consecutive records 4=

1959-07-07 ABER

1959-10-22 ABER

1900-01-02 ABER

1900-01-07 ABER

+ F————————— +

* So getting a listing of consecutive records is
easy enough.

set @rowa:=0;
select date, launchsite, (@rowa:=@rowa+l) as rowid from launch
order by launchsite,date limit 5;

fm e e F————— +

* Problem how to identify them date launchsite | rowid
R —— R —— e +

* Even if there is an integer index 1920-00-57 | ABER .

| 1959-10-22 | ABER 3

* it may not be for the order you want %888‘8%‘8% ABER 451
. R —— R —— e +

[t cold have gaps 5 rows in set (0.027 sec)

select date, launchsite, (@rowa:=@rowa+l) as rowid from launch
order by launchsite,date limit 5;

* Create an incrementing variable and increment 7 gate | launchsite | rowid |
.o S — S — b +
it in the query. 1959-06-29 | ABER 6

, 1059-07-07 | ABER 7
* watch for resetting the value! 1959-10-22 | ABER 8
1060-01-02 | ABER 9

* watch for when the value increments too | 1960701707 | ABER |

5 rows in set (0.027 sec)

Idea: selfjoin!

° Cl‘eate ad Set that I Want (use With)- with xx(date, site, num) as (select date, launchsite, (@row:=@row+1) from launch
order by launchsite,date limit 3)
° JOin it tO itself! erect >J|'<o]icrl;o>n:xx;(s ZZ 0on XX.Ssite=zz.site;

* AlmOSt’ bUt the Value Of num date site num date site num
< 1959-06-29 ABER 1 1959-10-22 ABER 6
lncremented 1959-06-29 ABER 1 1959-07-07 ABER 5
1959-06-29 ABER 1 1959-06-29 ABER 4
* With acts like a store procedure so it 1959707707 ASER 2 1999710722 ABER 6
only gets expanded when required. l0s0-1002 AR 5 101000 heeR ¢
1959-10-22 ABER 3 1959-07-07 ABER 5
e [tis required twice! 1959-10-22 ABER 3 1959-06-29 ABER 4

* So the value of row is computed
twice.

* Cannot reset to zero every time

(maybe could but I do not know how)

http://xx.site
http://zz.site

Make two explicit subsets

set @row=0;

* Need another variable but otherwise easy. set @rowy=0;

* That works with xx(date, site, num) as (select date, launchsite, (@row:=@row+1)
from launch order by launchsite,date limit 3),
* Now to get that offset zz(date, site, num) as (select date, launchsite, (@rowy:=@rowy+1)
from launch order by launchsite,date limit 3)
* JLENZSLﬂ)tFaLIZI select xx.site, xx.date, zz.date, xx.num, zz.num, datediff(zz.date,xx.date) from xx

join zz on xx.site=zz.site and XxX.num=zz.num;

* Small(ish) problem efﬁciency site date date num num datediff(zz.date,xx.date)
ABER 1959-06-29 1959-06-29 1 1 0
* get rid of “limit 3’ ABER 1959-07-07 1959-07-07 2 2 0
ABER 1959-10-22 1959-10-22 3 3 0
* On 66000 records this takes 18 seconds!
* Theory: string comparisons are slow set @row=0;

set @rowy=0;
with xx(date, site, num) as (select date, launchsite, (@row:=@row+1)
from launch order by launchsite,date limit 3),
zz(date, site, num) as (select date, launchsite, (@rowy:=@rowy+1)

* eliminate “xx.site=zz.site" from join

* 160 seconds

o String comp is not issue! from launch order by launchsite,date limit 3)
select xx.site, xx.date, zz.date, xx.num, zz.num, datediff(zz.date,xx.date) from xx
* Theory: “row” comparison is the issue join zz on xx.site=zz.site and xx.num=zz.num-1;
* Without row comparison the join creates a lot of rows site date date num num datediff(zz.date,xx.date)
. ABER 1959-06-29 1959-07-07 1 2 8
next page ABER 1959-07-07 1959-10-22 2 3 107

replace “row” comparison with date comparison

1.6 seconds
* Theory: subtraction in join is the issue

without subtraction 0.8 seconds!

* Subtraction was the whole point!

http://xx.site
http://zz.site

This join will create a LOT of rows — but how many
select xx.silte, xx.date, zz.date, xx.num, zz.num,
datediff(zz.date,xx.date) from xx

HOW many rOWS? join zz on xx.site=zz.site;

number of rows 1n the table
select count(x) from launch;
63688

This 1s the max possible
select count(x) * count(x) from launch;

 Each of the xx and zz sets contains 4056161344

63638 rows

* 5O max rows from join is 6368832

#Now to compute actual number

aa query gets the count at each site

bb adds everything up, but has a lot of rows
final select just uses the max from bb

set @qq:=0;
* 4056161344 set @rr:=0;
with aa(cc) as (select count(x) from launch group by launchsite),
. . : bb(mm,nn,00) as (select cc, @rr:=@rr+cc, @qq:=@qq+cckcc from aa)
* ThlS WOUId happen lf Onlyl SIte select max(oo), max(oo)/(max(nn)xmax(nn)) from bb;
o 1 max (00) max(00)/(max(nn)xmax(nn))
Actual number is sum of square of naxtoo) a0

number at each site.

About 4% of the possible so

* How to do this using only sql????

still better than cross-product
Honestly, | would be very tempted to use python and sql....

This is a actual number of rows

that the query would create

http://xx.site
http://zz.site

ROW numbering by grOup set @pname:="Xxxxx";

set @rank:=1;
select launchsite,
@rank:=if (@pname=launchsite, @rank+1,

Previous slide just got total in group i (@oname:=launchsite,1,1))

from launch
order by launchsite, date;

YSNYA 84

* sgl has a “rank” function which YSNYA 85
should do much the same thing, e 1
YUMA 2
* it is unreliable/useless WA 4
5

YUMA
* My tests, the total is correct c | |
Equivalent to above, just avoids separate “set”

but replications along the way select launchsite,

@rank:=if (@pname=launchsite, @rank+1,
if (@pname:=1launchsite,1,1))
from launch as 11,
(select @pname:='yweruiyw') as pp,
(select @rank:=1) as rr
order by launchsite limit 10;

Doing full cross-product, but

there is only one row in two of

these Naming required when there is

more than one part of “from”

set @row=0;

Efficiency

with xx(date, site, num) as (select date, launchsite, (@row:=@row+1)
Just start one counter before the P SR I s
zz(date, site, num) as (select date, launchsite, (@rowy:=@rowy+1)

Other! from launch order by launchsite,date limit 3)

select xx.site, xx.date, zz.date, xx.num, zz.num, datediff(zz.date,xx.date) from xx
join zz on xx.site=zz.site and xx.num=zz.num;

site date date num num datediff(zz.date,xx.date)
ABER 1959-06-29 1959-07-07 1 2 8
ABER 1959-07-07 1959-10-22 2 3 107

several possibly slow operations
* two selects

* join

Flexible — easily change offset

Awkward — requires two separate
selects

Readable

Use lagging variables

Idea use variables that hold the value from the prior

row
set @psite='xgxgxg';

set @pdate=curdate();
with aa(psite, site, pdate, date) as

(select @psite, @psite:=launchsite, @pdate, @pdate:=date
* same for @pdate from launch order by launchsite, date)

select site, date, pdate, datediff(date, pdate) from aa where site=psite;

Note that @psite is “reported” before it is updated

site date pdate datediff(date, pdate)

0 . . ABER 1959-07-07 1959-06-29 38
Fast: less than 40% time of previous T 19590707 107

ABER 1960-01-02 1959-10-22 72
Awkward:

* lag of 1is OK.
* 2 would be bad, 5 awful
Undefined

* mysql does not guarantee the order of
evaluations in select

Use lag function

select launchsite, date, datediff(date, lag(date,1)
over (partition by launchsite order by date))
from launch

* LAG(XXX,n) OVER (PARTITION BY YVY ORDER order by launchsite,date
BY ZZZ) launchsite date diff
ABER 1959-06-29 NULL

* XXX==the column to lag frsi A

* n==the amount of lag

with aa(site, date, diff) as (

* over — set conditions on la e e
ég datediff(date, lag(date,1) over (partition by launchsite order by date))
from launch order by launchsite,date limit 3

* PARTITION BY yyy) o |
select x from aa where diff is not NULL;

o . launchsite date diff

grouping ABER 1959-07-07 8
ABER 1959-10-22 107

* order by zzz
* sorting

* In prior queries we got partition by and order
by using 2 keys on “order by”.

* LAG is independent of “order by”

