

• file:hitcount0.php

Hit Counters

<title>Visit counter</title>
</head><body><div class="bigger"> <div class="c2">
<?php print updateAndGetCount(100); ?>
</div></div><?php function updateAndGetCount($iidd) {
 $servername = "localhost";
 $username = "gtstudent";
 $password = "";
 $dbname = "count";
 $conn = new mysqli($servername, $username, $password, $dbname);
 if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
 }
 $sql = "SELECT max(count) as c FROM count WHERE id = $iidd";
 $result = $conn->query($sql);
 $row = $result->fetch_assoc();
 if ($row==null || $row["c"]==null) {
 $visits = 1;
 }
 else {
 $visits = $row["c"];
 $visits++;
 }
 $sql = "INSERT INTO count (id, count) VALUES ($iidd , $visits);";
 $result = $conn->query($sql);
 $conn->close();
 return $visits;
} ?>
</body> </html>

Improvement to Hit counting
• Should not be the whole page

• Should not just insert into table as that will
accumulate a lot of junk

• file: hitcount.php

• at least addresses junk problem

• might be better to use SQL update

• file: hitcount2.php

• Better (quicker) if SQL table had id as primary
key

• id could not be a primary key until after
hitcount2.

create table countp1 (
 id int NOT NULL,
 count int not null,
 primary key (id)
);

create table countp2 (
 id int NOT NULL primary key,
 count int not null
);

create table countp3 (
 id int NOT NULL,
 count int not null,
 constraint pkc
 primary key (id, count)
);

Still better HitCount

• Rather than making the whole page
a hit count, create a small bit to do
the hitcount

• Use javascript fetch to get data
from PHP

• The html and the hitcount do not
have to come from the same place!

• protocols must agree!

• PHP does not generate HTML, just
returns the number of hits

• Page largely separated from counter

 <script>
 const baseURL = "http://comet.cs.brynmawr.edu/~gtowell/380/Lec10/";
 function getHit() {
 const data = { id: 12 };
 let fd = new FormData();
 for(var i in data){
 fd.append(i,data[i]);
 }
 fetch(baseURL+"hitcountwidget.php", {
 method: 'POST',
 mode:"cors",
 body: fd,
 }).then(function(response) {
 response.text().then(function(text) {
 console.log($("div.hcc").text() + text);
 $("div.hcc").text("HC:"+text);
 });
 });
 }

 $(document).ready(function() {
 getHit();
 }
 </script>
 <div id="12" class="hcc"></div>
 <div style="height:calc(100% - 50px); margin-top:0px”> ….

file:pagewithhitcount.html

PHP side of a better hitcount

• No awkward HTML

• better separation of
presentation and
preparation

• only response is a number

• code here is otherwise the
same as hitcount2.php

<?php function updateAndGetCount($iidd) {
 $servername = "localhost";
 $username = "gtstudent";
 $password = "";
 $dbname = "count";
 $conn = new mysqli($servername, $username, $password, $dbname);
 if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
 }
 $sql = "SELECT count as c FROM count WHERE id = $iidd";
 $result = $conn->query($sql);
 $row = $result->fetch_assoc();
 if ($row==null || $row["c"]==null) {
 //echo "new counter";
 $visits = 1;
 $sql = "INSERT INTO count (id, count) VALUES ($iidd , $visits);";
 $result = $conn->query($sql);
 }
 else {
 $visits = $row["c"];
 $visits++;
 $sql = "update count set count=$visits where id=$iidd";
 $conn->query($sql);
 }
 $conn->close();
 return $visits;
}
echo updateAndGetCount($_REQUEST["id"]);

?>

Javascript Fetch

• Fetch is a Promise

• First “then” occurs on receiving headers

• In this case body might contain JSON
or plain text

• So examine headers to determine
what the body will contain.

• Invoke a new Promise to get the
body of the response and parse
appropriately

• THEN handle the parsed result.

fetch(myRequest).then(function(response)	{	
		const	contentType	=	response.headers.get("content-type");	
		if	(contentType	&&	contentType.indexOf("application/json")	!==	-1)	{	
				return	response.json().then(function(json)	{	
						//	process	your	JSON	data	further	
				});	
		}	else	{	
				return	response.text().then(function(text)	{	
						//	this	is	text,	do	something	with	it	
				});	
		}	
});	

More Promising<html>
 <head>
 <script src="../JQ/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <div id="countout"></div>
 <button onclick="push()" id="mybutton">Push Me</button>
 <script>
 var pushCount=0;
 $(document).ready(function() {
 $("#countout").html("Count " + pushCount);
 });
 function push() {
 gtsleep2(1000).then(function(val) {
 pushCount++;
 $("#countout").html(val + " " + pushCount);
 },
 function(reason) {
 $("#countout").html("Rejected " + reason + " " + pushCount);
 });
 }
 function gtsleep2(ms)
 {
 return(new Promise(function(resolve, reject) {
 setTimeout(function() { resolve("success"); }, ms);
 }));
 }
 </script></body></html>

Two functions in then

depending on call to resolve

or reject in promise

file:eventloop3.html

Best yet HitCount

• Put all of the javascript and
supporting CSS into
hitcountscript.js and
hitcountstyle.css

• Then user only needs to add an
element with an attribute hitcountid
(along with <link and <script)

• With a little work could put all css
into js file

• With a little more work, no
JQuery

<html>
 <head>
 <script src="../JQ/jquery-1.9.1.min.js"></script>
 <link rel="stylesheet" href="hitcountstyle.css">

 </head>
 <body>
 <script src="hitcountscript.js"></script>
 <div hitcountid="12" class="hcc"></div>
 rest of page

file: pagewithhitcount2.html

function getHit() {
 const data = { id: $("div.hcc").attr("hitcountid"), uurl: window.location.href};
 let fd = new FormData();
 for(var i in data){
 fd.append(i,data[i]);
 }
 fetch(baseURL+"hitcountwidget.php", {
 method: 'POST',
 mode:"cors",
 body: fd,
 }).then(function(response) {
 response.text().then(function(text) {
 console.log($("div.hcc").text() + text);
 $("div.hcc").text("HC:"+text);
 });
 });
}

$(document).ready(function() {
 getHit();
}
);

Client-Server communications
• Whole page reload

• forms (which can be built on the fly in JS)

• JS based

• fetch

• Continuing Needs

• Polling

• Long Polling

• EventListeners

• Node.js

The cost of communicating
• If you load a page HTTPS then all fetch must be HTTPS

• HTTPS is more expensive
• Latency increase by switching to HTTPS : the initial SSL handshake (green) requires two (extra) roundtrips before the connection is

established, compared to just the one roundtrip required (blue) to establish a TCP connection to the plain unencrypted HTTP port..
• Bandwidth Increase : The used bandwidth will increase slightly as the header size will increase by a number of bytes for protocol reasons

and the effective payload will decrease a due to the framing overhead, and some ciphers will use padding as well. (max 6-7% increase in
bandwidth).

• CPU Load : The most computational expensive part is the public key exchange, after which a relatively efficient symmetric cypher is used.

Assumes that each transmission takes 28ms

Everything done on server or client takes 0ms

Then http requires at least 112 ms

https requires 224ms

Given that communicating is expensive
• Does client really need to send an ID?

• $_SERVER[‘HTTP_REFERER']

• only problem here is that not all clients send it.

• in practice almost all do

• Rather than an ID could have JS send this

• window.location.href

• Why not just use this as the ID?

• What can I collect about page requesters?

• What would be intertesting to collect?

• what infomation about the client is even available?

• $_SERVER[‘REMOTE_ADDR'];

• Given IP can reverse DNS and infer origin location ….

Doing more with hit count

Polling
• Easy

• Just use setInterval in JS

• PHP looks otherwise
unchanged

• But

• Lots of useless polls

• May not get information
updates quickly

file: polling.html, polling.php

Note 3 different syntaxes for same operation

AJAX

1. An event occurs in a web page (the page is
loaded, a button is clicked)

2. An XMLHttpRequest object is created by
JavaScript

3. The XMLHttpRequest object sends a request to
a web server

4. The server processes the request

5. The server sends a response back to the web
page

6. The response is read by JavaScript

7. Proper action (like page update) is performed
by JavaScript

Asynchronous JavaScript And XML.

Long Polling
• Core idea

• Do all the work to set up a connection
• Do not send back information from server until the

something interesting happens
• Advantage:

• no awkward polling
• immediate notification when event occurs
• simple

• Disadvantage:
• The server architecture must be able to work with many

pending connections.
• Some servers run one process per connection; resulting

in as many processes as there are connections,. Each
process may consumes a lot of memory.

• Requires server side code support

files: longpoller.html, longpolled.php

Server Sent Events
• Long Polling without

setup/teardown of
connection

• Same server-side
concerns for open
connections

• ONE WAY!!

• Only time client says
anything to server is
at setup

• GET only

Server-side events

• javascript EventSource

• need to write
“handlers” for message
types

• default handlers

• PHP

• message syntax is
important but
otherwise can look a lot
like polling

• “retry” is a poll-like thing

File: eventer.html

evented.php

Fully symmetric communication

• Node is most
widespread
implementation

• Usually called
Node.js

• On server side, NOT
apache, or Nginx, ..

• low-latency, full-duplex
communication makes
the location of code
less important

Web Sockets

For much more: https://www.youtube.com/watch?v=jo_B4LTHi3I

https://www.youtube.com/watch?v=jo_B4LTHi3I

Systems

• Goal: provide a way for 206
students to have friendly
competition with the towers of
Hanoi

• Design: a stopwatch with Hanoi
instructions

• A backend to generate a graph of
times.

• Graph drawn on html canvas
object

Towers of Hanoi

Files: towers.html, aaa.php

create database if not exists hanoi;

use hanoi;
drop table if exists timedata;

create table timedata (
 id int NOT NULL auto_increment primary key,
 actor varchar(64),
 witness varchar(5),
 time varchar(10)
);

